Асимптотическое решение системы линейных дифференциальных уравнений с малым параметром при производных

С. Ф. Фещенко, И. И. Шкиль

§ 1. 1. В настоящей статье рассматривается вопрос о построении асимптотического решения системы линейных дифференциальных уравнений, в которой действительный малый параметр $\varepsilon > 0$ стоит в качестве множителя при части производных. К таким системам приводятся дифференциальные уравнения, в которых при старших производных стоит как множитель малый параметр.

Вопрос о построении асимптотических решений для таких уравнений рассматривался многими авторами [2]. Однако способ построения решения, предложенный в [2], громоздкий, так как требует разложения коэффициентов дифференциальных уравнений в ряд Тейлора. Кроме того, авторы упомянутой работы исключают из рассмотрения случай кратных корней характеристического уравнения.

Предлагаемый нами способ построения асимптотического решения не требует предварительного разложения коэффициентов в ряд Тейлора и распространяется на случай кратных корней характеристического уравнения.

2. Рассмотрим систему дифференциальных уравнений вида

$$E_1 \frac{dx}{dt'} = A(t')x + E_1B(t')e^{\theta(t')},$$

где $A(t')$ — квадратная действительная матрица n-го порядка; $x, B(t')$ — n-мерные векторы; E_1 — диагональная квадратная матрица n-го порядка, имеющая вид

$$E_1 = \begin{bmatrix} 1, 1, \varepsilon, \varepsilon, \ldots, \varepsilon \end{bmatrix}.$$ (2)

Преобразуем систему (1) при помощи преобразования

$$t' = \varepsilon t = \tau$$ (3)

к виду

$$\frac{dx}{d\tau} = [A_0(\tau) + \varepsilon A_1(\tau)]x + \varepsilon B(\tau)e^{\theta(\tau)},$$ (4)

где $A_0(\tau), A_1(\tau)$ — квадратные матрицы n-го порядка, имеющие вид

$$A_0(\tau) = \begin{bmatrix} 0, & 0, & \ldots, & 0 \end{bmatrix}, \quad A_1(\tau) = \begin{bmatrix} a_{11}(\tau), & \ldots, & a_{1n}(\tau) \\ a_{21}(\tau), & \ldots, & a_{2n}(\tau) \\ \ldots & \ldots & \ldots \\ a_{n1}(\tau), & \ldots, & a_{nn}(\tau) \end{bmatrix};$$ (5)

$a_{ij}(\tau), i, j = 1, 2, \ldots, n$ — элементы матрицы $A(\tau)$.

429
Будем предполагать, что функции $a_{ij}(\tau)$ ($i, j = 1, 2, \ldots, n$) компоненты вектора $B(\tau)$ и функция

$$k(\tau) = \frac{d\theta(\tau)}{d\tau}$$

имеют производные всех порядков по τ на промежутке $0 \leq \tau \leq L$.

Мы будем искать решение системы (4), удовлетворяющее условиям

$$(x)_{t=0} = x_0.$$

3. Рассмотрим уравнение

$$\det A_0(\tau) - iE = 0,$$

где E — единичная матрица.

Корни этого уравнения обозначим через $\lambda_1(\tau), \lambda_2(\tau), \ldots, \lambda_n(\tau)$. Из вида матрицы $A_0(\tau)$ следует, что

$$\lambda_1(\tau) = \lambda_2(\tau) = \ldots = 0.$$

Относительно остальных корней $\lambda_3(\tau), \ldots, \lambda_n(\tau)$ будем допускать, что они простые* на промежутке $[0, L]$, причем один корень, например $\lambda_3(\tau)$, чисто мнимый, т. е.

$$\lambda_3(\tau) = i\alpha(\tau).$$

Как известно, структура матрицы $A_0(\tau)$ предопределяется поведением элементарных делителей, соответствующих корням уравнения (8). Простым корням соответствуют простые и кратные элементарные делители. Корнем $\lambda_3(\tau)$ может соответствовать простой и кратный элементарный делитель. Это и предположим. Тогда существует неособая матрица $V(\tau)$, приводящая матрицу $A_0(\tau)$ к виду

$$V^{-1}(\tau) A_0(\tau) V(\tau) = W(\tau),$$

где

$$W(\tau) = \begin{vmatrix} W_1(\tau), & 0 \\ 0, & W_2(\tau) \end{vmatrix}$$

и

$$W_1(\tau) = \begin{vmatrix} 0, & 1 \\ 0, & 0 \end{vmatrix}, \quad W_2(\tau) = \begin{vmatrix} \lambda_3(\tau), & 0, & \ldots, & 0 \\ 0, & \lambda_4(\tau), & \ldots, & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0, & 0, & \ldots, & \lambda_n(\tau) \end{vmatrix}.$$

Отметим, как показано в работе [3], матрицы $W_1(\tau), W_2(\tau)$, неограниченно дифференцируемые по τ на сегменте $[0, L]$. Дифференцируемость этих матриц необходима для построения решения системы (4).

4. В настоящей статье мы строим решение для так называемого «резонансного» случая, когда функция $k(\tau)$ в некоторых изолированных точках промежутка $[0, L]$ становится равной функции $\alpha(\tau)$, однако $k(\tau)$ не равна при любом $\tau \in [0, L]$ остальным корням уравнения (8).

Способ построения решения для «резонансного» случая может быть легко распространён и на «нерезонансный» случай, когда функция $k(\tau)$ не становится равной ни одному корню уравнения (8).

Поэтому на этом случае мы не останавливаемся.

§ 2. 1. Теорема 1. Если функции $a_{ij}(\tau)$ ($i, j = 1, 2, \ldots, n$), компоненты вектора $B(\tau)$ и функция $k(\tau)$ неограниченно дифференцируемые по τ на промежутке $[0, L]$ и матрица $V^{-1}(\tau) \left[A_1(\tau) V(\tau) \right] \frac{dV(\tau)}{d\tau}$ такое

* Предлагаемый способ может быть применен, если среди корней $\lambda_3(\tau), \ldots, \lambda_n(\tau)$ будут корни тождественной кратности, кратность которых не выше второй.
При любом $\tau \in [0, L]$, это формальное решение системы (4) в случае резонанса может быть представлено в виде

$$x = U_1(\tau, \mu)\zeta_1 + \sum_{s=2}^{\infty} U_2(\tau, \mu)^{s}\zeta_2 + \sum_{s=0}^{\infty} P(\tau, \mu)^s \mathcal{Z}_1(\tau, \mu) e^{i\Theta(\tau)},$$

где двумерный вектор ζ_1 и $n-2$-мерный вектор ζ_2 определяются уравнениями

$$\frac{d\zeta_1}{dt} = \mathcal{A}_1(\tau, \mu)\zeta_1,$$

$$\frac{d\zeta_2}{dt} = \left[\mathcal{A}_2(\tau, \mu) - ik(\tau) E \right] \zeta_2 + \mathcal{Z}(\tau, \mu).$$

$U_1(\tau, \mu), U_2(\tau, \mu)$ — прямоугольные матрицы соответствующих измерений; $\mathcal{A}_1(\tau, \mu)$ — квадратная матрица второго порядка; $\mathcal{A}_2(\tau, \mu)$ — квадратная матрица $n-2$-го порядка; $P(\tau, \mu)$ и $Z(\tau, \mu)$ — векторы, размерность которых соответственно равна n и $n-2$.

Предполагается, что упомянутые в теореме матрицы и векторы могут быть представлены в виде формальных рядов по степеням параметра μ ($\mu = \sqrt{\epsilon}$).

$$U_j(\tau, \mu) = \sum_{s=0}^{\infty} \mu^s U_j^{(s)}(\tau), \quad P_j(\tau, \mu) = \sum_{s=0}^{\infty} \mu^s P_j^{(s)}(\tau), \quad j = 1, 2,$$

$$Z(\tau, \mu) = \sum_{s=0}^{\infty} \mu^s Z^{(s)}(\tau).$$

Для доказательства теоремы применим способ, изложенный в [5]. Для этого подставим вектор x, заданный соотношением (15) и (16), в систему (4) и получим

$$[\mu^2 U_1(\tau, \mu) + U_1(\tau, \mu) \mathcal{A}_1(\tau, \mu)] \zeta_1 + \sum_{s=0}^{\infty} \mu^s U_2(\tau, \mu)^s \zeta_2 e^{i\Theta(\tau)} +$$

$$+ \sum_{s=0}^{\infty} \mu^s P(\tau, \mu)^s \mathcal{Z}_1(\tau, \mu) e^{i\Theta(\tau)} = [A_0(\tau) + \mu^2 A_1(\tau)] \zeta_1 +$$

$$X \left[U_1(\tau, \mu) \zeta_2 + \sum_{s=0}^{\infty} \mu^s U_2(\tau, \mu)^s \zeta_2 + \sum_{s=0}^{\infty} \mu^s \mathcal{Z}(\tau, \mu) e^{i\Theta(\tau)} + \mu^2 B(\tau) e^{i\Theta(\tau)},

где $U_j^{(s)}(\tau, \mu) (j = 1, 2), \quad P_j^{(s)}(\tau, \mu) —$ производные по τ.

В соотношении (18) потребуем равенства коэффициентов при векторах $\zeta_1, \zeta_2 e^{i\Theta(\tau)}$ и функции $e^{i\Theta(\tau)}$, будем иметь

$$\mu^2 U_j^{(s)}(\tau, \mu) + U_j(\tau, \mu) \mathcal{A}_1(\tau, \mu) = [A_0(\tau) + \mu^2 A_1(\tau)] U_j(\tau, \mu) \quad j = 1, 2$$

и

$$U_2(\tau, \mu) \mathcal{Z}(\tau, \mu) = [A_0(\tau) - ik(\tau) E + \mu^2 A_1(\tau)] P(\tau, \mu) + \mu^2 [B(\tau) - P(\tau, \mu)],$$

2. Перейдем к определению матриц $U_j^{(s)}(\tau), \mathcal{A}_1^{(s)}(\tau) (j = 1, 2; \quad s = 0, 1, \ldots)$. Для этого воспользуемся соотношением (19). Будем приравнивать в нем коэффициенты при одинаковых степенях параметра μ.

Приравниваем коэффициенты при μ^0, получим

$$Q_j^{(s)}(\tau) \mathcal{E}_j^{(s)}(\tau) = W(\tau) Q_j^{(s)}(\tau), \quad j = 1, 2,$$
где

\[Q_j^{(0)} (\tau) = V^{-1} (\tau) U_j^{(0)} (\tau), \quad j = 1, 2. \]

(22)

Так как матрица \(W (\tau) \) квазидиагональная, имеющая вид (12), то уравнения (21) расщепляются на два уравнения

\[\ddot{Q}_j^{(0)} (\tau) \mathcal{U}_j^{(0)} (\tau) = W_1 (\tau) \ddot{Q}_j^{(0)} (\tau), \quad i = 1, 2 \]

(23)

и

\[\ddot{Q}_j^{(0)} (\tau) \mathcal{U}_j^{(0)} (\tau) = W_2 (\tau) \ddot{Q}_j^{(0)} (\tau), \quad j = 1, 2. \]

(24)

Для определения матриц \(\mathcal{U}_j^{(0)} (\tau) \) положим матрицы \(\ddot{Q}_1^{(0)} (\tau), \ddot{Q}_2^{(0)} (\tau) \) равными единичной матрице. Тогда будем иметь:

\[\mathcal{U}_j^{(0)} (\tau) = W_j (\tau), \quad \ddot{Q}_1^{(0)} (\tau) = 0, \quad \ddot{Q}_2^{(0)} (\tau) = 0. \]

(25)

Таким образом, матрицы \(\mathcal{U}_j^{(0)} (\tau), \ddot{Q}_j^{(0)} (\tau) \) \(j = 1, 2 \) определены. Зная матрицы \(\ddot{Q}_j^{(0)} (\tau) \), из соотношения (22) можно определить матрицы \(U_j^{(0)} (\tau) \) \(j = 1, 2 \).

Перейдем к определению матрицы \(U_j^{(1)} (\tau), \mathcal{U}_j^{(1)} (\tau) \) \(j = 1, 2 \). Для этого в соотношении (19) сравним коэффициенты при \(p^1 \). Получим

\[Q_j^{(1)} (\tau) W_j (\tau) - W_j (\tau) Q_j^{(1)} (\tau) = - Q_j^{(0)} (\tau) \mathcal{U}_j^{(1)} (\tau), \quad j = 1, 2, \]

(26)

где

\[Q_j^{(1)} (\tau) = V^{-1} (\tau) U_j^{(1)} (\tau), \quad j = 1, 2. \]

(27)

После расщепления уравнения (26) примут вид

\[\ddot{Q}^{(1)}_j (\tau) W_j (\tau) - W_j (\tau) \ddot{Q}^{(1)}_j (\tau) = - \ddot{Q}^{(0)}_j (\tau) \mathcal{U}^{(1)}_j (\tau), \quad j = 1, 2, \]

(28)

и

\[\ddot{Q}^{(1)}_1 (\tau) W_1 (\tau) - W_1 (\tau) \ddot{Q}^{(1)}_1 (\tau) = - \ddot{Q}^{(0)}_1 (\tau) \mathcal{U}^{(1)}_1 (\tau), \quad j = 1, 2. \]

(29)

Раскрывая матричные уравнения (28) \(j = 1 \), (29) \(j = 2 \), положив при этом диагональные элементы матриц \(\ddot{Q}^{(1)}_1 (\tau) \) и \(\ddot{Q}^{(1)}_2 (\tau) \) равными нулю, так как они произвольные, найдем

\[\{ q_1^{(1)} (\tau) \}_{21} = \mathcal{U}^{(1)}_1 (\tau), \]

(30)

\[\{ q_1^{(1)} (\tau) \}_{22} = - \mathcal{U}^{(1)}_1 (\tau), \]

(31)

где \(\{ q_1^{(1)} (\tau) \}_{21}, \{ q_1^{(1)} (\tau) \}_{22}, \ldots \) элементы матриц \(Q_1^{(1)} (\tau), \mathcal{U}_1^{(1)} (\tau) \):

\[\mathcal{U}_2^{(1)} (\tau) \equiv 0. \]

(32)

Решая матричные уравнения (28) \(j = 2 \), (29) \(j = 1 \), будем иметь

\[\ddot{Q}_1^{(1)} (\tau) \equiv 0, \quad \ddot{Q}_2^{(1)} (\tau) \equiv 0. \]

(33)

Следовательно, для определения матрицы \(U_j^{(1)} (\tau), \mathcal{U}_j^{(1)} (\tau) \) нужно найти элементы \(\{ q_1^{(1)} (\tau) \}_{21} \) и \(\{ q_1^{(1)} (\tau) \}_{12} \).

Для этого в соотношении (19) приравняем коэффициенты при \(p^2 \), будем иметь

\[Q_j^{(2)} (\tau) W_j (\tau) - W_j (\tau) Q_j^{(2)} (\tau) = C_j^{(2)} (\tau) - Q_j^{(1)} (\tau) \mathcal{U}_j^{(1)} (\tau) - Q_j^{(0)} (\tau) \mathcal{U}_j^{(2)} (\tau), \quad j = 1, 2. \]

(34)
\(Q_j^{(2)} (\tau) = V^{-1} (\tau) U_j^{(2)} (\tau), \quad C_j^{(2)} (\tau) = V^{-1} (\tau) \left[A_1 (\tau) U_j^{(0)} (\tau) - U_j^{(0)} (\tau) \right] \quad j = 1, 2. \)
(34)

Так как матрица \(W (\tau) \) имеет вид (12), то уравнения (33) можно заменить уравнениями

\[
\bar{Q}_j^{(2)} (\tau) W_j (\tau) - W_1 (\tau) \bar{Q}_j^{(2)} (\tau) = \bar{C}_j^{(2)} (\tau) - \bar{Q}_j^{(1)} (\tau) \mathbf{A}_j^{(1)} (\tau) - \bar{Q}_j^{(0)} (\tau) \mathbf{A}_j^{(2)} (\tau) \\
j = 1, 2,
\]
(35)

\[
\bar{Q}_j^{(2)} (\tau) W_j (\tau) - W_2 (\tau) \bar{Q}_j^{(2)} (\tau) = \bar{C}_j^{(2)} (\tau) - \bar{Q}_j^{(1)} (\tau) \mathbf{A}_j^{(1)} (\tau) - \bar{Q}_j^{(0)} (\tau) \mathbf{A}_j^{(2)} (\tau), \\
j = 1, 2.
\]
(36)

В матрицах \(\bar{Q}_j^{(2)} (\tau) \), \(\bar{Q}_j^{(2)} (\tau) \) диагональные элементы положим равными нулю. Тогда из уравнения (35) при \(j = 1 \) находим

\[
\{ q_1^{(2)} (\tau) \}_{21} = \{ \mathbf{A}_1^{(2)} (\tau) \}_{11} - \{ \alpha_1^{(2)} (\tau) \}_{11} = \{ e_1^{(2)} (\tau) \}_{22} - \{ \mathbf{A}_1^{(2)} (\tau) \}_{22},
\]
(37)

\[
\{ q_1^{(1)} (\tau) \}_{21} = \pm \sqrt{\{ e_1^{(2)} (\tau) \}_{21}},
\]
(38)

Из остальных матричных уравнений (35) при \(j = 2 \) и (36) можно определить элементы матриц \(\bar{Q}_1^{(2)} (\tau) \), \(Q_1^{(2)} (\tau) \), \(\mathbf{A}_2^{(2)} (\tau) \). Элементы \(\{ q_1^{(2)} (\tau) \}_{21} \) и \(\{ q_1^{(2)} (\tau) \}_{12} \) остаются пока неопределенными. Чтобы их определить, нужно в соотношении (19) сравнить коэффициенты при \(\mu^3 \) и применить тот же способ, что и для нахождения элементов \(\{ q_1^{(1)} (\tau) \}_{21} \) и \(\{ q_1^{(1)} (\tau) \}_{12} \).

Применяя метод математической индукции, легко показать, что наш алгоритм позволяет определить матрицы \(U_j^{(\sigma)} (\tau) \), \(\mathbf{A}_j^{(\sigma)} (\tau) (j = 1, 2, s = 0, 1, \ldots, m) \) для любого натурального числа \(m \).

3. Укажем способ нахождения векторов \(P (\tau, \mu) \) и \(Z (\tau, \mu) \). Для этого воспользуемся соотношением (20). Будем приравнивать в нем коэффициенты при одинаковых степенях параметра \(\mu \).

Итак, приравниваем в соотношении (20) коэффициенты при \(\mu^2 \). Получим

\[
Q_2^{(0)} (\tau) Z_2^{(2)} (\tau) = \left[W (\tau) - \text{i} k (\tau) E \right] \Pi^{(2)} (\tau) + R (\tau),
\]
(39)

где

\[
\Pi^{(2)} (\tau) = V^{-1} (\tau) P^{(2)} (\tau),
\]

\[
R (\tau) = V^{-1} (\tau) B (\tau).
\]
(40)

Система уравнений (39) может быть расщеплена на две системы вида

\[
\left[W_1 (\tau) - \text{i} k (\tau) E \right] \Pi_1^{(2)} (\tau) = - \bar{R} (\tau)
\]
(41)

\[
\left[W_2 (\tau) - \text{i} k (\tau) E \right] \Pi_2^{(2)} (\tau) = Z_2^{(2)} (\tau) - \bar{R} (\tau).
\]
(42)

Так как функция \(\text{i} k (\tau) \) может стать равной корню \(\lambda_3 (\tau) \) при некоторых значениях \(\tau \in [0, L] \), то для разрешимости системы уравнений (42) достаточно вектор \(Z_2^{(2)} (\tau) \) подобрать так, чтобы

\[
\{ z_2^{(2)} (\tau) \}_4 = \{ r (\tau) \}_4,
\]
(43)

и

\[
\{ z_2^{(2)} (\tau) \}_i \equiv 0 \quad i = 3, 5, \ldots, n,
\]

где через \(\{ z_2^{(2)} (\tau) \}_i \), \(\{ r (\tau) \}_j \) \((j = 3, 4, \ldots, n) \) мы обозначали соответственно-
шие координаты векторов $Z^{(2)}(\tau), R(\tau)$. Ввиду того что
\[
\det |W_1(\tau) - ik(\tau)E| \neq 0, \\
\det |W_3(\tau) - ik(\tau)E| \neq 0,
\]
(44)
где
\[
W_3(\tau) = \{\lambda_4(\tau), \lambda_5(\tau), \ldots, \lambda_n(\tau)\},
\]
(45)
при любом $\tau \in [0, L]$, то из системы уравнений (41), (42) находим
\[
\Pi^{(2)}(\tau) = -[W_1(\tau) - ik(\tau)E]^{-1}R(\tau),
\]
(46)
где через $\Pi^{(2)}(\tau), R(\tau)$ мы обозначили вектора, составляющие которых соответственно равны $[\Pi^{(2)}(\tau)]_h, [r(\tau)]_h (h = 5, 6, \ldots, n)$.

Первая составляющая вектора $\Pi^{(2)}(\tau)$ остается произвольной. Ее можно положить равной нулю. Следовательно, векторы $Z^{(2)}(\tau)$ и $\Pi^{(2)}(\tau)$ определены. Из соотношения (40), зная вектор $\Pi^{(2)}(\tau)$, можно найти вектор $P^{(2)}(\tau)$.

Таким же способом можно найти и все последующие векторы $Z^{(s)}(\tau), P^{(s)}(\tau)$ ($s = 3, \ldots, m$).

Таким образом, указав способ определения коэффициентов рядов (17), мы и доказали теорему.

§ 3.1. В настоящем параграфе покажем, что построенное нами решение имеет асимптотический характер. Для этого введем в рассмотрение вектор
\[
x_m = U_{1m}(\tau, \mu)\xi_{1m} + [U_{2m}(\tau, \mu)\xi_{2m} + P_m(\tau, \mu)]e^{i\theta(\tau)},
\]
(47)

\[
\frac{d\xi_{1m}}{dt} = \mathcal{A}_{1m}(\tau, \mu)\xi_{1m},
\]
(48)
где через $U_{jm}(\tau, \mu), \mathcal{A}_{jm}(\tau, \mu), P_m(\tau, \mu), Z_m(\tau, \mu) (j = 1, 2)$ обозначены соответственно m-частные суммы рядов (17).

Покажем, что вектор x_m, начиная с некоторого значения m, будет стремиться к точному решению x с увеличением m, а при $\mu \to 0$. Этим самым и будет доказан асимптотический характер построенного нами решения. Будем предполагать дальше, что, помимо условий теоремы 1, на сегменте $[0, L]$ выполняются условия

\[
\operatorname{Re} \left(\left| V^{-1}(\tau) \begin{bmatrix} A_1(\tau) V(\tau) - \frac{dV(\tau)}{d\tau} \end{bmatrix} \right|_{21} \right) < 0^*,
\]
(49)
\[
I \left(\left| V^{-1}(\tau) \begin{bmatrix} A_1(\tau) V(\tau) - \frac{dV(\tau)}{d\tau} \end{bmatrix} \right|_{21} \right) \equiv 0.
\]

Кроме этого, будем допускать, что начальные условия у точного и приближенного решений одинаковы, т.е.

\[
(x - x_m)_{t=0} = 0.
\]
(50)

2. Перейдем к доказательству леммы.

* $\operatorname{Re}(\beta)$ — означает вещественную часть комплексного числа β, $I(\beta)$ — минимум.
Лемма. Если выполняются условия теоремы 1 и условия (49), то вектор x_m удовлетворяет систему дифференциальных уравнений (4) с точностью до величин порядка малости μ^m равномерно относительно t на сегменте $0 \leq t \leq \frac{L}{\mu^2}$.

Для доказательства леммы подставим вектор x_m, заданный соотношениями (47), (48), в выражение

$$\frac{dx_m}{dt} = [A_0 (\tau) + \mu^2 A_1 (\tau)] x_m + \mu^2 B (\tau) e^{i\Theta (\tau)}.$$

Согласно теореме 1 будем иметь

$$\frac{dx_m}{dt} = [A_0 (\tau) + \mu^2 A_1 (\tau)] x_m + \mu^2 B (\tau) e^{i\Theta (\tau)} + \mu^m [R_1 (\tau, \mu) \xi_1 + R_2 (\tau, \mu) \xi_2 e^{i\Theta (\tau)} + \Phi (\tau, \mu)],$$

где элементы матриц $R_j (\tau, \mu) (j = 1, 2)$ и компоненты вектора $\Phi (\tau, \mu)$ ограничены по модулю на сегменте $[0, L]$. Пусть интегрирование системы дифференциальных уравнений (48) можно показать, используя условия леммы, что

$$|\xi_1| \leq \frac{M_1}{\mu^2}, \quad |\xi_2| \leq M_2,$$

где M_1 и M_2 — постоянные, независимые от параметра μ, изменяющегося в интервале $0 < \mu < \mu_0$. Таким образом, учитывая соотношение (52), имеем

$$\frac{dx_m}{dt} = [A_0 (\tau) + \mu^2 A_1 (\tau)] x_m + \mu^2 B (\tau) e^{i\Theta (\tau)} + \mu^m \Phi (\tau, \mu),$$

где $\Phi (\tau, \mu)$ — вектор, компоненты которого ограничены по модулю.

Лемма доказана.

3. После этого можно доказать теорему:

Теорема 2. Если выполняются условия леммы, то для любых $L > 0, 0 < \mu < \mu_0$ можно указать такую постоянную C, не зависящую от параметра μ, что

$$|x - x_m| \leq \mu^m C.$$ (54)

Для доказательства данной теоремы введем в рассмотрение вектор $y = x - x_m$. (55)

Тогда вектор y удовлетворяет системе уравнений

$$\frac{dy}{dt} = [A_0 (\tau) + \mu^2 A_1 (\tau)] y - \mu^{m-1} \Phi (\tau, \mu).$$ (56)

Представим точное решение (15) в виде

$$x = U_{1m} (\tau, \mu) q_1 + [U_{2m} (\tau, \mu) q_2 + P_m (\tau, \mu)] e^{i\Theta (\tau)}.$$ (57)

где векторы q_1 и q_2 будем рассматривать, как новые переменные. Тогда

$$y = \sum_{j=1}^\infty U_{jm} (\tau, \mu) \xi_j,$$ (58)

gде

$$\xi_1 = q_1 - \zeta_{1m}, \quad \xi_2 = (q_2 - \zeta_{2m}) e^{i\Theta (\tau)}.$$ (59)

Подставляя вектор y, заданный соотношением (58), в систему (56),
\[\sum_{j=1}^{2} U_{jm}(\tau, \mu) \left[\frac{d\xi_j}{dt} - 2A_{jm}(\tau, \mu) \xi_j \right] = \sum_{j=1}^{2} \left[A_0(\tau) + \mu^2 A_1(\tau) \right] U_{jm}(\tau, \mu) -
\]

\[-U_{jm}(\tau, \mu) A_{jm}(\tau, \mu) - \mu^2 U_{jm}(\tau, \mu) \xi_j - \mu^{m-1} \Phi(\tau, \mu). \] (60)

матрицы, фигурирующие при векторах \(\xi_j \) в правой части соотношения (60), имеют порядок малости \(\mu^{m-1} \). Поэтому, умножая соотношение (60) на \(V^{-1}(\tau) \), найдем

\[\sum_{j=1}^{2} Q_{jm}(\tau, \mu) \left[\frac{d\xi_j}{dt} - 2A_{jm}(\tau, \mu) \xi_j \right] = \mu^{m+1} \sum_{j=1}^{2} R_j(\tau, \mu) \xi_j - \mu^{m-1} F(\tau, \mu), \] (61)

где

\[Q_{jm}(\tau, \mu) = V^{-1}(\tau) U_{jm}(\tau, \mu), \]

\[F(\tau, \mu) = V^{-1}(\tau) \Phi(\tau, \mu), \]

\(R_j(\tau, \mu) \) — матрицы, элементы которых ограничены по модулю.

Для дальнейших выкладок нам необходимо рассмотреть квадратную матрицу \(Q_m(\tau, \mu) \) n-го порядка, образованную из элементов матрицы \(Q_{jm}(\tau, \mu) (j = 1, 2) \):

\[Q_m(\tau, \mu) = \| Q_{1m}(\tau, \mu), Q_{2m}(\tau, \mu) \|. \] (63)

При \(\mu = 0 \) матрица \(Q_m(\tau, 0) \) согласно теореме 1 вырождается в единичную матрицу \(E \). Поэтому можно указать такое положительное число \(\mu_0 \), что при \(0 < \mu \leq \mu_0 \) матрица \(Q_m(\tau, \mu) \) будет иметь обратную матрицу, причем

\[Q_m^{-1}(\tau, \mu) = E - \mu Q_1(\tau) + \mu^2 Q_2(\tau) \ldots \ldots \] (64)

Тогда, умножая обе части соотношения (61) на \(Q_m^{-1}(\tau, \mu) \), и решая полученнное уравнение относительно \(\frac{d\xi_i}{dt} \), будем иметь

\[\frac{d\xi_i}{dt} = W_{lm}(\tau, \mu) \xi_j + \mu^{m+1} \sum_{k=1}^{2} R_k(\tau, \mu) \xi_k + \mu^{m-1} \bar{F}_i(\tau, \mu), \quad i = 1, 2, \] (65)

где элементы матрицы \(R_j(\tau, \mu) (j = 1, 2) \) и компоненты вектора \(\bar{F}_i(\tau, \mu) \) есть дифференцируемые функции на сегменте \([0, L] \).

Системы дифференциальных уравнений (65) можно записать так:

\[\frac{d\xi_1}{dt} = W_1(\tau) \xi_1 + \mu^2 \mathbf{A}^{(1)}(\tau) + \mu^3 \mathbf{A}^{(2)}(\tau) + \mu^4 \mathbf{A}^{(3)}(\tau) \xi_1 + \mu^4 \left[K_{11}(\tau, \mu) \xi_1 + K_{12}(\tau, \mu) \xi_2 \right] + \mu^{m-1} \bar{F}_1(\tau, \mu), \] (66)

\[\frac{d\xi_2}{dt} = W_2(\tau) \xi_2 + \mu^2 \left[K_{21}(\tau, \mu) \xi_1 + K_{22}(\tau, \mu) \xi_2 \right] + \mu^{m-1} \bar{F}_2(\tau, \mu). \] (67)

Подвергнем систему уравнений (66), (67) преобразованию

\[\xi_1 = L(\mu) \gamma_1, \] (68)

где \(L(\mu) \) — квадратная диагональная матрица, имеющая вид

\[L(\mu) = \{1, \mu^2\}. \] (69)

Тогда, учитывая вид матрицы \(W_1(\tau) \) и применяя преобразование (68),
\[
\frac{d\eta_1}{dt} = \mu^2 \left(\beta_1^*(t, \mu) \eta_1 + \beta_2^*(t, \mu) \xi_2 \right) + \mu^{m-3} F_1(t, \mu), \tag{70}
\]

\[
\frac{d\xi_2}{dt} = W_2(t) \xi_2 + \mu^2 \left(\beta_3(t, \mu) \eta_1 + K_{22}^*(t, \mu) \xi_2 \right) + \mu^{m-1} F_2(t, \mu), \tag{71}
\]
ge где элементы матрицы $\beta_i(t, \mu)$ ($i = 1, 2, 3$) и компоненты вектора $F_1(t, \mu)$ ограничены по модулю на сегменте $[0, L]$.

Как известно, матрицы $\Omega_1^{(1)}(\tau)$ и $W_2(\tau)$ можно представить в виде

\[
\Omega_1^{(1)}(\tau) = \Delta_1(\tau) + i S_1(\tau),
\]

\[
W_2(\tau) = \Delta_2(\tau) + i S_2(\tau),
\]
ge где $\Delta_1(\tau), \Delta_2(\tau)$ и $S_1(\tau), S_2(\tau)$ — эрмитовы матрицы, причем, так как матрица $\Omega_1^{(1)}(\tau)$ чисто диагональная, имеющая согласно (45) мнимые элементы, то

\[
\Delta_1(\tau) = 0. \tag{73}
\]

На матрицу $\Delta_2(\tau)$ наложим дополнительное условие, а именно, будем предполагать, что квадратическая форма $(\xi_1, \Delta_2(\tau) \xi_2)$ не положительная, т. е.

\[
(\xi_1, \Delta_2(\tau) \xi_2) \leq 0. \tag{74}
\]

Тогда, заменяя в системах (70) и (71) векторы η_1 и ξ_2 на эрмитово сопряженные η_1^*, ξ_2^*, получим

\[
\frac{d\eta_1^*}{dt} = -i \mu \eta_1^* S_1(\tau) + \mu^2 \left[\eta_1^* \beta_1^*(t, \mu) + \xi_2^* \beta_2^*(t, \mu) \right] + \mu^{m-3} F_1(t, \mu), \tag{75}
\]

\[
\frac{d\xi_2^*}{dt} = \xi_2^* \left[\Delta_2(t) - i S_2(t) \right] + \mu^2 \left[\eta_1^* \beta_3^*(t, \mu) + \xi_2^* K_{22}^*(t, \mu) \right] + \mu^{m-1} F_2^*(t, \mu). \tag{76}
\]

Из систем уравнений (70), (71), (75), (76), учитывая соотношение (74), имеем

\[
\frac{d}{dt} \left(\mid \eta_1 \mid^2 + \mid \xi_2 \mid^2 \right) \leq \mu^3 M_0 (\mid \eta_1 \mid^2 + \mid \xi_2 \mid^2) + \mu^{m-3} F_0 \left(\mid \eta_1 \mid + \mid \xi_2 \mid \right), \tag{77}
\]
ge где M_0 и F_0 — постоянные величины, не зависящие от параметра μ.

Так как вектор $y = x - x_m$ при $t = 0$ обращается в нулевой вектор, то можно показать, что

\[
(\eta_1)_{t=0} = 0, \quad (\xi_2)_{t=0} = 0. \tag{78}
\]

Поскольку из неравенства (77) следует

\[
\mid \eta_1 \mid^2 + \mid \xi_2 \mid^2 \leq \mu^{m-3} F_0 \int e^{i M_0 (t-\nu)} (\mid \eta_1 \mid + \mid \xi_2 \mid) dt. \tag{79}
\]

Пусть на сегменте $[0, L]$

\[
\max (\mid \eta_1 \mid^2 + \mid \xi_2 \mid^2) = \gamma (\mu). \tag{80}
\]

Тогда из соотношения (79) имеем

\[
\gamma (\mu) \leq \mu^{m-3} F_0 e^{M_0 L} V \gamma (\mu). \tag{81}
\]

437
Решая последнее неравенство относительно \(V_\gamma (\mu) \), получаем

\[V_\gamma (\mu) \leq \mu^{m-5}F_0e^{\lambda_{M_L}}. \]

(82)

Из соотношений (55), (58), (59), (68), (80) и (82) следует справедливость теоремы 2.

ЛИТЕРАТУРА

1. Ю. А. Митропольский, К вопросу о внутреннем резонансе в нелинейных колебательных системах, Наукові записки КДУ, т. XVI, вип. II, 1957.
2. М. И. Вишняк и Л. А. Ласторин, Регулярное вырождение и пограничный слой для линейных дифференциальных уравнений с малым параметром, Успехи мат. наук, т. XII, в. 5 (77), 1957.
4. С. Ф. Фешенко и М. И. Шкіль, О разрешимости систем линейных дифференциальных уравнений, ДАН УРСР, № 5, 1958.
5. М. И. Шкіль, До питань про асимптотичне представління розв'язків систем лінійних диференціальних рівнянь, коефіцієнти яких залежать від параметра, Наукові записки Київського педінституту, т. XXX, 1958.

Поступила 21 V 1960 г.

Киев

An Asymptotic Solution of a System of Linear Differential Equations Having a Small Diameter with Derivatives

S. F. Feshchenko and N. I. Shkîl

Summary

The authors consider the problem of constructing an asymptotic solution of a system of linear differential equations in which a real small parameter \(\varepsilon > 0 \) is a multiplier of some of the derivatives.

Differential equations in which the small parameter is a multiplier of the lower order derivatives are reduced to such systems.