О существовании и свойствах ограниченного решения системы квазилинейных дифференциально-разностных уравнений

В. П. Рубан, В. И. Фодчук

В настоящей заметке мы изложим теоремы о существовании и свойствах ограниченного на всей вещественной оси решения некоторого специального квазилинейного дифференциально-разностного уравнения. При доказательстве теорем используются идеи, применявшиеся в работах Н. Н. Богословова [1], [2] к системам обыкновенных дифференциальных уравнений.

Рассмотрим квазилинейное дифференциально-разностное уравнение вида

$$\frac{du(t)}{dt} = \sum_{\ell=0}^{r} H_{\ell} u(t - \Delta_{\ell}) + F(t, u(t), u(t - \Delta_{1}), \ldots, u(t - \Delta_{r}), \varepsilon),$$

где u, F — векторы n-мерного евклидова пространства E^{n}, H_{ℓ} — постоянные квадратные матрицы порядка $(n \times n)$, Δ_{ℓ} — постоянные, удовлетворяющие условиям

$$0 \leq \Delta_{0} < \Delta_{1} < \ldots < \Delta_{r}.$$

Одномерные уравнения вида (1) с аналитической правой частью рассматривались в работе [5], в которой показано, что при достаточно малых начальных условиях решение существует и асимптотически стремится к нулю при $t \to \infty$.

В нашей работе рассматривается уравнение более общего вида и при совсем иных условиях.

Пусть матрицы H_{ℓ} и вектор-функция F удовлетворяют следующим условиям:

1) все вещественные части корней $z_{1}, z_{2}, \ldots, z_{n}, \ldots$ уравнения

$$\text{Det} (Ez - \sum_{\ell=0}^{r} H_{\ell} e^{-\Delta_{\ell} z}) = 0$$

удовлетворяют неравенству

$$\text{Re}(z_{n}) \leq -\gamma < 0;$$

2) вектор-функция $F(t, u_{1}, \ldots, u_{r}, u, \varepsilon)$ определена и непрерывна по совокупности всех переменных в области

$$t \in (-\infty, \infty), \varepsilon \in [0, \varepsilon_{0}], u_{1}, u_{2}, \ldots, u_{r} \in U_{\varepsilon_{0}},$$

где $U_{\varepsilon_{0}}$ — область в E^{n}, в которой выполняется условие $|u| \leq \varepsilon_{0}$;

3) при всех $t \in (-\infty, \infty), \varepsilon \in [0, \varepsilon_{0}]$ и при $u = u_{1} = \ldots = u_{r} = 0$
где $M(\varepsilon) \to 0$ при $\varepsilon \to 0$;

4) для любых $q \in [0, \varepsilon_0]$, $t \in (-\infty, \infty)$, $\varepsilon \in [0, \varepsilon_0]$, $u', u'', u_1, u_1', u_1'', u_2', u_2'' \in U_0$ имеет место неравенство

\[|F(t, u', u_1', \ldots, u_2', \varepsilon) - F(t, u'', u_1'', \ldots, u_2'', \varepsilon)| \leq \lambda(\varepsilon, q) \left(|u' - u''| + |u_1' - u_1''| + \ldots + |u_2' - u_2''| \right), \tag{7} \]

где $\lambda(\varepsilon, q) \to 0$ при $\varepsilon \to 0$, $q \to 0$. К уравнениям (1) с перечисленными условиями приводятся, в частности, задача обоснования применимости к нелинейным дифференциально-разностным уравнениям метода усреднения.

Докажем следующие предложения.

Теорема 1. Если для системы (1) выполняются условия 1)–4), то можно указать такое $\varepsilon^* \in (0, \varepsilon_0)$, что для каждого $\varepsilon \in [0, \varepsilon^*]$ эта система имеет единственное решение $\Phi(t, \varepsilon)$, определенное в области $t \in (-\infty, \infty)$ и удовлетворяющее условию

\[|\Phi(t, \varepsilon)| \leq D(\varepsilon) < \varepsilon_0. \tag{8} \]

Когда, кроме того, функция F периодична по t с периодом T, то и $\Phi(t, \varepsilon)$ периодична по t с тем же периодом T; если же F почти периодична по t равномерно относительно ε и u_1, \ldots, u_k в области (5), то и $\Phi(t, \varepsilon)$ почти периодична по t равномерно относительно ε в области $[0, \varepsilon^*]$.

Доказательство. Возьмем матрицу $V(t)$, удовлетворяющую при $t \leq 0$ уравнению

\[\frac{dV(t)}{dt} = - \sum_{i=0}^{r} H_i V(t + \Delta_i) \tag{9} \]

с начальными условиями

\[V(t)|_{t=0} = E, \quad V(t)|_{t>0} \equiv 0. \tag{10} \]

Существование такой матрицы легко может быть доказано с помощью известного «метода шагов».

Так как корни характеристического уравнения для уравнения (9) равны по величине и противоположны по знаку корням уравнения (3), то они удовлетворяют условиям

\[\text{Re}(z_k) \geq \gamma > 0. \tag{11} \]

Тогда, как показывается в работах [3], [4], матрица $V(t)$ при $t \leq 0$ будет удовлетворять неравенству

\[|V(t)| \leq Ke^{\gamma t} = Ke^{-\gamma_1 t}, \tag{12} \]

где K, γ_1 — некоторые положительные постоянные, $0 < \gamma_1 < \gamma$.

Возьмем произвольные пока $D \in (0, \varepsilon_0)$ и будем рассматривать класс $C(D)$ функций $\Phi(t, \varepsilon)$, принимающих значения в E^n, определенных и непрерывных в области $t \in (-\infty, \infty)$, $\varepsilon \in [0, \varepsilon_0]$ и удовлетворяющих неравенству

\[|\Phi(t, \varepsilon)| \leq D. \tag{13} \]

Рассмотрим интегральное преобразование функции $\Phi(t, \varepsilon)$ в функции $J[\Phi(t, \varepsilon)]$ по формуле

\[J[\Phi(t, \varepsilon)] = \int_{-\infty}^{\infty} V(z) \cdot F[t+z, \Phi(t+z, \varepsilon), \Phi(t+z-\Delta_1, \varepsilon), \ldots, \Phi(t+z-\Delta_r, \varepsilon), \varepsilon] \, dz. \tag{14} \]
В силу условий теоремы и условий, наложенных на $\Phi(t, \varepsilon)$, функции $J[\Phi(t, \varepsilon)]$ будут определены и непрерывны по t, ε при всех $t \in (-\infty, \infty), \varepsilon \in [0, \varepsilon_0]$.

На основе неравенств (6), (7), (12) и (13) для $J[\Phi(t, \varepsilon)]$ получаем оценку

$$|J[\Phi(t, \varepsilon)]| \leq \frac{K}{Y_1} [(r + 1) \lambda(\varepsilon, D)D + M(\varepsilon)].$$

(15)

Так как $\lambda(\varepsilon, D) \to 0$ и $M(\varepsilon) \to 0$ при $\varepsilon \to 0$, $D \to 0$, мы можем выбрать такие $\varepsilon^*, D, \varepsilon^* \in (0, \varepsilon_0), D \in (0, q_0)$, что при всех $\varepsilon \in [0, \varepsilon^*]$ будет выполняться неравенство

$$\frac{K}{Y_1} [(r + 1) \lambda(\varepsilon, D)D + M(\varepsilon)] \leq D(\varepsilon) \leq D,$$

(16)

на основании которого получаем

$$|J[\Phi(t, \varepsilon)]| \leq D(\varepsilon) \leq D \leq q_0.$$

(17)

Мы показали, что при $\varepsilon \in [0, \varepsilon^*]$ преобразование (14) переводит класс функций $C(D)$ в себя.

Возьмем теперь две функции $\Phi_1, \Phi_2 \in C(D)$. Введем в классе $C(D)$ норму функции по формуле

$$||\Phi(t, \varepsilon)|| = \sup_{t \in (-\infty, \infty)} |\Phi(t, \varepsilon)|.$$

Тогда на основании (6), (7) и (12) получаем

$$||J[\Phi_1(t, \varepsilon)] - J[\Phi_2(t, \varepsilon)]|| \leq$$

$$\leq \frac{K}{Y_1} (r + 1) \lambda(\varepsilon, D) ||\Phi_1 - \Phi_2||.$$

(18)

Выберем ε^*, D так, чтобы при всех $\varepsilon \in [0, \varepsilon^*]$ наряду с неравенством (16) выполнялось неравенство

$$\frac{K}{Y_1} (r + 1) \lambda(\varepsilon, D) \leq q < 1,$$

(19)

тогда получим

$$||J[\Phi_1] - J[\Phi_2]|| \leq q ||\Phi_1 - \Phi_2||.$$

(20)

Рассмотрим теперь интегральное уравнение

$$J[\Phi(t, \varepsilon)] = \Phi(t, \varepsilon).$$

(21)

В силу доказанных свойств преобразования (14) уравнение (21) удовлетворяет условиям теоремы Каччипополи—Банаха, в силу которой уравнение (21) имеет единственное решение $\varphi(t, \varepsilon)$, принадлежащее классу $C(D)$, т. е. непрерывное в области $t \in (-\infty, \infty), \varepsilon \in [0, \varepsilon^*]$ и удовлетворяющее в этой области неравенству (8).

Легко показать, что функция $\varphi(t, \varepsilon)$, удовлетворяющая уравнению (21), будет являться решением уравнения (1) и наоборот.

Таким образом, первая часть теоремы доказана.

Решение $\varphi(t, \varepsilon)$ уравнения (21), существование которого мы доказали, может быть найдено методом последовательных приближений.

Докажем вторую часть теоремы. Обозначим через Φ_t и $J_t[\Phi]$ значения функций Φ и $J[\Phi]$ в точке $t + \tau$ и оценим разность $J_t[\Phi] - J[\Phi]$. На
основании (7), (12) и (19) получаем оценку

\[||J_\tau [\Phi] - J [\Phi]|| \leq q ||\Phi_\tau - \Phi|| + \frac{K}{\gamma_1} ||F_\tau - F||, \]

gде символом \(||F_\tau - F|| \) обозначена величина

\[\sup_{\tau \in (-\infty, \infty), u, u_1, \ldots, u_r, e} |F(t + \tau, u, u_1, \ldots, u_r, e) - F(t, u, u_1, \ldots, u_r, e)|. \]

Величина \(\frac{K}{\gamma_1} ||F_\tau - F|| \) не зависит от выбора функции \(\Phi \). Обозначим ее для сокращения через \(\sigma_{\tau, e} \). Тогда получаем

\[||J_\tau [\Phi] - J [\Phi]|| \leq q ||\Phi_\tau - \Phi|| + \sigma_{\tau, e}. \]

(22)

Возьмем последовательность приближений для функции \(\Phi(t, e) \)

\[\Phi^{(0)} = 0; \quad \Phi^{(1)} = J[\Phi^{(0)}], \ldots, \Phi^{(m+1)} = J[\Phi^{(m)}], \ldots \]

Тогда

\[\phi(t, e) = \lim_{m \to \infty} \Phi^{(m)}(t, e). \]

Применим неравенство (22) к последовательным приближенным решениям. Получим

\[||\Phi_\tau^{(0)} - \Phi^{(0)}|| = 0, \]
\[||\Phi_\tau^{(1)} - \Phi^{(1)}|| \leq q ||\Phi_\tau^{(0)} - \Phi^{(0)}|| + \sigma_{\tau, e} = \sigma_{\tau, e}, \]
\[||\Phi_\tau^{(2)} - \Phi^{(2)}|| \leq q ||\Phi_\tau^{(1)} - \Phi^{(1)}|| + \sigma_{\tau, e} \leq (1 + q) \sigma_{\tau, e}, \]
\[\ldots \ldots \]
\[||\Phi_\tau^{(m+1)} - \Phi^{(m+1)}|| \leq q ||\Phi_\tau^{(m)} - \Phi^{(m)}|| + \sigma_{\tau, e} \leq \]
\[\leq (1 + q + q^2 + \ldots + q^m) \sigma_{\tau, e} = \]
\[= \frac{1 - q^{m+1}}{1 - q} \sigma_{\tau, e} \leq \frac{\sigma_{\tau, e}}{1 - q}, \]
\[\ldots \ldots \]

Переходя в этих неравенствах к пределу, получаем

\[||\phi_\tau - \phi|| \leq \frac{\sigma_{\tau, e}}{1 - q} = \frac{K}{\gamma_1 (1 - q)} ||F_\tau - F||. \]

(23)

Пусть \(F(t, u, u_1, \ldots, u_r, e) \) периодична по \(t \) с периодом \(T \). Тогда, взяв \(\tau = T \), имеем \(||F_\tau - F|| = 0 \), откуда из (23) получаем \(||\phi_\tau - \phi|| = 0 \).

Значит, \(\phi(t, e) \) периодична по \(t \) с периодом \(T \). Пусть теперь \(F \) почти периодична по \(t \) равномерно относительно \(u, u_1, \ldots, u_r, e \) в области (5).

Это означает, что каждому положительному \(\eta \) можно сопоставить такое \(\ell(\eta) \), что в любом промежутке длины \(\ell(\eta) \) лежит по крайней мере одно число \(\tau \), для которого имеет место неравенство

\[||F_\tau - F|| \leq \eta. \]

Мы можем л(\(\eta \)) выбрать так, что будет выполняться условие

\[||F_\tau - F|| \leq \frac{\gamma_1 (1 - q)}{K} \eta. \]

Тогда из (23) получаем

\[||\phi_\tau - \phi|| \leq \eta. \]
А это и означает, что \(\varphi(t, \varepsilon) \) почти периодична по \(t \) равномерно относительно \(\varepsilon \).

Теорема полностью доказана.

Теорема 2. Если для системы (1) выполнены условия (1)-(4), то можно указать такие \(e_1, q_0 \) \((0 < e_1 \leq \varepsilon^* \leq e_0, 0 < q_1 \leq q_0)\), что для каждого \(\varepsilon \in [0, e_1] \) любое решение системы (1), удовлетворяющее условиям

\[
\left| u(t, \varepsilon) \right|_{t \in [t_0 - \Delta, t_0]} = \Phi_0(t, \varepsilon), \quad \left| \Phi_0(t, \varepsilon) \right| \leq q_1,
\]

где \(\Phi_0(t, \varepsilon) - \) непрерывная функция своих аргументов, будет при \(t \to \infty \) асимптотически стремиться к единственному решению \(u = \varphi(t, \varepsilon) \) системы (1), определенному и ограниченному при всех \(t \in (-\infty, \infty) \).

Доказательство. В теореме 1 доказано, что для уравнения (1) можно выбрать такое \(\varepsilon^* \in (0, e_0) \), что при всех \(\varepsilon \in [0, \varepsilon^*] \) существует единственное решение \(u = \varphi(t, \varepsilon) \) уравнения (1), определенное и ограниченное при всех \(t \in (-\infty, \infty) \) и удовлетворяющее интегральному уравнению

\[
\varphi(t, \varepsilon) = \int_{-\infty}^{t} V(t - \tau) F[\tau, \varphi(\tau, \varepsilon), \varphi(\tau - \Delta_1, \varepsilon), \ldots, \varphi(\tau - \Delta_n, \varepsilon), \varepsilon] d\tau. \quad (25)
\]

Рассмотрим теперь любое решение уравнения (1), удовлетворяющее начальному условию (24). Легко показать, что уравнение (1) с начальным условием (24) эквивалентно интегральному уравнению

\[
\begin{align*}
\Phi_0(t, \varepsilon), \quad t \in [t_0 - \Delta, t_0], \\
u(t, \varepsilon) &= \left\{ \\
V(t_0 - t) \Phi_0(t_0, \varepsilon) + \sum_{i=1}^{r} H_i \int_{t_0 - \Delta_i}^{t_0} V(t - \tau + \Delta_i) \Phi_0(\tau, \varepsilon) d\tau + \\
+ \int_{t_0 - \Delta}^{t} V(t - \tau) F[\tau, u(\tau, \varepsilon), u(\tau - \Delta_1, \varepsilon), \ldots, u(\tau - \Delta_n, \varepsilon), \varepsilon] d\tau,
\end{align*}
\]

(26)

Так же, как и в теореме 1, с помощью теоремы Каччиниоли-Банаха доказываем, что можно выбрать такие положительные \(e_1 \leq \varepsilon^*, q_1 \leq q_0 \), что при любом \(\varepsilon \in [0, e_1] \) уравнение (26) имеет единственное решение, определенное при всех \(t \geq t_0 \) и лежащее в \(U_{0*} \). Это решение будет зависеть от выбора начальной функции \(\Phi_0(t, \varepsilon) \). Обозначим его символом \(u = \varphi(t, t_0, \Phi_0, \varepsilon) \). Решение, существование которого мы доказали, может быть получено с помощью метода последовательных приближений.

Оценим разность между двумя решениями уравнения (1), соответствующими двум начальными функциям \(\Phi_0(t, \varepsilon) \) и \(\Phi_0^*(t, \varepsilon) \).

Для этого будем оценивать соответствующую разность для последовательных приближений функции \(\varphi(t, t_0, \Phi_0, \varepsilon) \).

В качестве первого приближения для искомого решения возьмем функцию

\[
\psi(t, t_0, \Phi_0, \varepsilon) = \left\{ \begin{array}{ll}
\Phi_0(t, \varepsilon), & t \in [t_0 - \Delta, t_0], \\
V(t_0 - t) \Phi_0(t_0, \varepsilon), & t > t_0.
\end{array} \right. \quad (27)
\]

Тогда для последовательных приближений \(\psi_m(t, t_0, \Phi_0, \varepsilon) \) на основании (7) и (12) методом полной математической индукции получаем оценки

\[
|\psi_m(t, t_0, \Phi_0, \varepsilon) - \psi_m(t, t_0, \Phi_0^*, \varepsilon)| \leq
\leq K ||\Phi_0 - \Phi_0^*|| e^{-\gamma(t-t_0)} \left\{ 1 + h(\varepsilon, D) (t-t_0) + \ldots + \\
+ \frac{h^m(\varepsilon, D) (t-t_0)^m}{m!} + N \left[1 + h(\varepsilon, D) (t-t_0) + \ldots + \right. \right. \right. \right. \right.
\]

(28)
где

\[h(\varepsilon, D) = K \lambda(\varepsilon, D)(1 + \varepsilon y_1 \Lambda + \ldots + \varepsilon y_n \Lambda), \]

\[N = \sum_{l=0}^{r} \int_{t_{l-1}}^{t_l} e^{y_1(t-t_0) + \lambda l} dt, \]

\[\| \varphi_0 - \varphi_0^* \| = \sup_{t \in [t_{l-1}, t_l]} |\varphi_0(t, \varepsilon) - \varphi_0^*(t, \varepsilon)|. \]

Переходя в неравенстве (28) к пределу при \(m \to \infty \), получим

\[|\psi(t, t_0, \varphi_0, \varepsilon) - \psi(t, t_0, \varphi_0^*, \varepsilon)| \leq K (1 + N) \| \varphi_0 - \varphi_0^* \| e^{h(\varepsilon, D) - y_1(t-t_0)}. \] (29)

Выберем теперь \(\varepsilon_1, D \) так, чтобы при \(\varepsilon \in [0, \varepsilon_1] \) выполнялись неравенства

\[h(\varepsilon, D) - y_1 \leq -a < 0, \] (30)

\[D(\varepsilon) < \varepsilon_1. \] (31)

Тогда решение \(u = \varphi(t, \varepsilon) \), определенное на всей вещественной оси, будет также удовлетворять уравнению (26) с начальной функцией \(\varphi_0^*(t, \varepsilon) = \varphi(t, \varepsilon) \), и из неравенства (29) получаем

\[|\psi(t, t_0, \varphi_0, \varepsilon) - \varphi(t, \varepsilon)| \leq K (1 + N) \times \]

\[\times \sup_{t \in [t_{l-1}, t_l]} |\varphi_0(t, \varepsilon) - \varphi(t, \varepsilon)| e^{-a(t-t_0)}, \] (32)

откуда и следует асимптотическая устойчивость решения \(u = \varphi(t, \varepsilon) \).

Литература

1. Н. Н. Богоявленский, О некоторых статистических методах в математической физике, К., 1945.

Поступила 23. VII 1960 г.

Черновцы