В. П. Петренко

Об асимптотических свойствах мераоморфных функций и целых кривых

1. Основные результаты работы. Пусть \( f(z) \) — мероморфная при \( z \neq \infty \) функция, \( T(r, f) \), \( m(r, a, f) \), \( L(r, a, f) \) — стандартные обозначения, характеризующие рост и распределение значений \( f(z) \) (см. [1—3]). Количество характеристика роста функции \( L(r, a, f) \) называется величиной положительного отклонения \( f(z) \) относительно числа \( a \) и определяется так:

\[
\beta(a, f) = \lim_{r \to \infty} \frac{L(r, a, f)}{T(r, f)}.
\]

Множество \( \Omega(f) = \{a: \beta(a, f) > 0\} \) называется множеством положительных отклонений \( f(z) \). Для мероморфных функций конечного нижнего порядка множество \( \Omega(f) \) не более чем счетно (см. [2, 3]).

Пусть \( \vec{G}(z) = \{g_1(z), ..., g_p(z)\} \) — \( p \)-мерная целая кривая, \( \vec{a} \) — \( p \)-мерный комплексный вектор, \( T(r, \vec{G}) \), \( m(r, a, \vec{G}) \), \( L(r, a, \vec{G}) \) — стандартные обозначения, характеризующие рост и распределение значений \( p \)-мерных целых кривых (см. [4, 5]). Величина отклонения целой кривой \( \vec{G}(z) \) относительно вектора \( \vec{a} \) определяется так:

\[
\beta(\vec{a}, \vec{G}) = \lim_{r \to \infty} \frac{L(r, \vec{a}, \vec{G})}{T(r, \vec{G})}.
\]

Пусть \( A \) — фиксированная допустимая система \( p \)-мерных векторов (см. [6]). Множество \( \Omega_A(\vec{G}) = \{a \in A: \beta(a, \vec{G}) > 0\} \) называется множеством положительных отклонений \( \vec{G}(z) \) относительно допустимой системы векторов \( A \). Для целых кривых конечного нижнего порядка это множество не более чем счетно (см. [7]).

Сформулируем основные результаты данной работы об оценках величин \( \beta(a, f) \) и \( \beta(\vec{a}, \vec{G}) \).

Теорема 1. Если \( f(z) \) — мероморфная при \( z \neq \infty \) функция конечного нижнего порядка \( \lambda \), то для нее \( \Sigma \beta^2(a, f) \leq 2 \left(1 + V^2 \right) (\pi \lambda)^2 \), где суммирование ведется по всем \( a \) при \( \lambda \geq 0,5 \) и по всем \( a \), для которых \( \beta(a, f) \leq \pi \lambda \sin \pi \lambda \) при \( \lambda \leq 0,5 \).

Для функции \( h(z) = e^z \) имеем \( \lambda = 1 \) \( \beta^2(0, h) + \beta^2(\infty, h) = 2n^2 = 2(\pi \lambda)^2 \).

Приведем формулировку аналога этой теоремы для \( p \)-мерных целых кривых. Пусть хотя бы две компоненты целой кривой \( \vec{G}(z) \) линейно независимы, а о означает максимальное число линейно независимых \( p \)-мерных векторов \( \{\vec{b}_k\}_{k=1}^o \), для которых \( \vec{G}(z), \vec{b}_k \equiv 0 \). Обозначим через \( M_0 \) линейную оболочку, образованную этими векторами \( \{\vec{b}_k\}_{k=1}^o \). Таким образом,

* Известно (см. [8]), что существует самое большое одно значение \( a \), для которого при \( \lambda \leq 0,5 \) \( \beta(a, f) \geq \pi \lambda \sin \pi \lambda \).
Множество \( \mathcal{M}_0 = \{ \mathcal{G} : \mathcal{G}(z), \bar{a} = 0 \} \). При этом целая кривая называется целой кривой с \( \omega \)-линейно зависящими компонентами.

**Теорема 2.** Пусть \( \mathcal{G}(z) \) — \( p \)-мерная целая кривая с \( \omega \)-линейно зависящими компонентами, имеющая конечный низший порядок \( \lambda \), \( A \) — фиксированная допустимая система \( p \)-мерных векторов. Тогда \( \Sigma \mathcal{G}(z) \leq \Sigma \omega \) \((\omega + 1)(1 + V^2)(\pi \lambda) \), где суммирование ведется по всем \( a \in A \setminus M_0 \), если \( \lambda \leq 0.5 \), и по тем \( \bar{a} \in A \setminus M_0 \), для которых \( \beta(a, \mathcal{G}) \leq \pi \lambda \sin \pi \lambda \), если \( \lambda \leq 0.5 \).

Введем следующую характеристику асимптотического поведения мероморфных функций и целых кривых. Пусть \( T(x) \) — произвольная положительная, непрерывная, неограниченная и неубывающая функция при \( x \geq 0 \). В [9] доказано, что если \( T(x) \) имеет конечный низший порядок \( \lambda \), то для этой функции \( T(x) \) существует последовательность пиков Попла \( \{ t_k \} \) порядка \( \lambda \).

Пусть \( \eta(r) \) — неотрицательная и непрерывная функция, определенная для \( r \geq 0 \) и бесконечно малая при \( r \to \infty \). Для функции \( \mathcal{G}(z) \) и каждого комплексного числа \( a \) положим (см. [10])

\[
E(r, a; \eta, f) = \begin{cases} 
\frac{1}{\ln |f(re^{i\theta}) - a|} & \geq \eta(r) T(r, f), \text{ если } a \neq \infty; \\
\frac{1}{\ln |f(re^{i\theta})|} & \geq \eta(r) T(r, f), \text{ если } a = \infty.
\end{cases}
\]

Пусть, далее, \{s_k\} и \{R_k\} — две последовательности, такие, что \{2s_k\} и \{2R_k\} — являются членами последовательности \( \{ \eta(k) \} \), где \( s_k \leq R_k \) \( k \geq k_0 \) и \( s_{k+1} \geq R_k \). Тогда сегменты \( \{2s_k\}, \{0.5R_k\} = \{u_k\} \) не пересекаются при различных значениях \( k \). Положим

\[
\inf \sup \{ E(r, a; \eta, f) = E_k(a; \eta, f), \omega(a; \eta, f) = \lim_{k \to \infty} E_k(a; \eta, f), \omega(a, f) = \inf_{\{\eta(r)\}} \omega(a; \eta, f),
\]

где \( \inf \) берется по всем действительным непрерывным функциям \( \eta(r) \), бесконечно малым при \( r \to \infty \). Эта величина \( \omega(a, f) \) тесно связана с величиной протяженности \( \sigma(a, f) \), введенной в работе [10]. Заметим, что для целой функции Миттаг — Левффера \( E_1(z) \) низкого порядка \( \lambda \geq 0.5 \) имеем [11, с. 114]

\[
\omega(\infty, E_1) = \frac{\pi}{\lambda}.
\]

Пусть \( \mathcal{G}(z) \) — \( p \)-мерная целая кривая. Как и в случае мероморфных функций, на непрерывных множествах \( u_k = [2s_k, 0.5R_k] \), где \{2s_k\} и \{2R_k\} — подпоследовательности пиков Попла для \( T(r, \mathcal{G}) \), определим для каждого \( p \)-мерного вектора \( a \) множество

\[
E(r, a; \eta, \mathcal{G}) = \left\{ \frac{\ln \| \mathcal{G}(re^{i\theta}) \|}{\| \mathcal{G}(re^{i\theta}), \bar{a} \|} \geq \eta(r) T(r, \mathcal{G}) \right\}.
\]

Полагаем, далее,

\[
\inf \sup \{ E(r, a; \eta, \mathcal{G}) = E_k(a; \eta, \mathcal{G}), \omega(a; \eta, \mathcal{G}) = \lim_{k \to \infty} E_k(a; \eta, \mathcal{G}) \} = \infty
\]

* Из общих теорем о свойствах величин \( \beta(a, \mathcal{G}) \) для целых кривых низкого порядка \( \lambda < 0.5 \) следует, что число тех \( \bar{a} \in A \setminus M_0 \), для которых \( \beta(a, \mathcal{G}) > \pi \lambda \sin \pi \lambda \) конечно.

774
где \( \eta (r) \) имеет тот же смысл, что и при определении \( \omega (a, f) \) для мероморфных функций. Основные результаты о свойствах \( \omega (a, f) \) и \( \omega (\tilde{a}, \tilde{f}) \) характеризуют следующие теоремы.

**Теорема 3.** Если \( f(z) \) — мероморфная функция конечного низкого порядка \( \lambda \), то для любого числа \( a \)

\[
\omega (a, f) \geq \begin{cases} \frac{\beta^2 (a, f)}{(\pi \lambda)^2 (1 + \sqrt{2})}, & \text{если } \lambda \geq 0,5; \\ \frac{\beta^2 (a, f)}{(\pi \lambda)^2 (1 + \sqrt{2})} \sin \pi \lambda, & \text{если } \lambda < 0,5, \ a, \beta (a, f) < \pi \lambda \tan \pi \lambda; \end{cases} \tag{2}
\]

\[
2 \sin^2 0,5\pi \lambda \sin \pi \lambda \cos \pi \lambda, & \text{если } \lambda < 0,5, \ a, \beta (a, f) \geq \pi \lambda \tan \pi \lambda. \]

Заметим, что для целой функции Миттаг — Леффе́рра при \( \lambda \geq 0,5 \) выполняется равенство (1) и, кроме того, \( \beta (\infty, E_\lambda) = \pi \lambda \). Этот факт характеризует значительную точность оценки (2) при \( \lambda \geq 0,5 \).

**Теорема 4.** Если \( G(z) \) — р-мерная целая кривая конечного низкого порядка \( \lambda \), то для любого вектора \( a \)

\[
\omega (\tilde{a}, \tilde{G}) \geq \begin{cases} \frac{\beta^2 (\tilde{a}, \tilde{G})}{(\pi \lambda)^2 (1 + \sqrt{2})}, & \text{если } \lambda \geq 0,5; \\ \frac{\beta^2 (\tilde{a}, \tilde{G})}{(\pi \lambda)^2 (1 + \sqrt{2})} \sin \pi \lambda, & \text{если } \lambda < 0,5, \ a, \beta (\tilde{a}, \tilde{G}) < \pi \lambda \tan \pi \lambda; \end{cases} \tag{3}
\]

\[
2 \sin^2 0,5\pi \lambda \sin \pi \lambda \cos \pi \lambda, & \text{если } \lambda < 0,5, \ a, \beta (\tilde{a}, \tilde{G}) \geq \pi \lambda \tan \pi \lambda. \]

2. **Доказательство теорем.** Докажем сначала теорему 1. Будем использовать неравенство (3.2.1), установленное в [3, с. 86], которое имеет место для любого \( x \geq \max (0,5; \lambda) \). Из этого неравенства следует (см. [3, с. 51]), что

\[
\beta (a, f) - \varepsilon \int_{2s}^{0,5r} T (r \lambda^{-1}) \frac{dr}{\lambda^{-1}} \leq \frac{\pi \lambda}{\sin \pi \lambda} \int_{2s}^{0,5r} \frac{m (t, a, f)}{\lambda^{-1}} \frac{dt}{\lambda^{-1}} +
\]

\[
+ \pi \lambda \tan \frac{\pi \lambda}{4x} \int_{2s}^{0,5r} N (t, a, f) \frac{dt}{\lambda^{-1}} + \frac{C}{x - \lambda} \left\{ \frac{T (2s \lambda^{-1})}{s^k} + \frac{T (2R \lambda^{-1})}{R^k} \right\}.
\]

Положим

\[
\beta = \beta (a) = \beta (a, f) - \varepsilon > 0, \ \sigma (x, \lambda) = \sigma = \frac{\pi \lambda}{2x}.
\]

В случае \( \lambda \geq 0,5 \)
σ может принимать любое значение из интервала (0; 0,5π). Из (4) получаем

\[
\left\{ \frac{\beta \sin \sigma}{\pi \lambda} - 1 + \cos \sigma \right\} \int_{2s}^{0.5R} \frac{T(r)}{r^{\lambda+1}} dr \leq \int_{2s}^{0.5R} \frac{m(r, a, f)}{r^{\lambda+1}} dr + \\
+ \frac{C}{x - \lambda} \left\{ \frac{T(2R)}{R^{\lambda}} + \frac{T(2s)}{s^{\lambda}} \right\}.
\]

(5)

Пусть \( f(\sigma) = \frac{\beta}{\pi \lambda} \sin \sigma - 1 + \cos \sigma \), функция \( f(\sigma) \) достигает своего максимума на интервале (0; 0,5π) в точке \( \sigma_0 = \arctg \frac{\beta}{\pi \lambda} \). При этом

\[
f(\sigma_0) = \beta^2 \{ \pi \lambda \left[ V \beta^2 + (\pi \lambda)^2 + \pi \lambda \right] \}^{-1}.
\]

(6)

Если \( \lambda \geq 0.5 \), то (см. [3, оценка (2.2.2)]) \( \beta < \pi \lambda \), следовательно, в этом случае

\[
f(\sigma_0) \leq \frac{\beta^2}{(\pi \lambda)^2 (1 + V/2)}.
\]

(7)

Положим в (5) \( s \in \{s_b\} \) и \( R \in \{R_b\} \), где \( \{s_b\} \) и \( \{R_b\} \) — две последовательности, такие, что \( \{2s_b\} \) и \( \{2R_b\} \) являются членами последовательности пиков Полин функции \( T(r, f) \). При этом для \( k \geq k_0 \) \( s_b \leq R_b \cdot M^{-2} \) и \( M = \exp(e^{-2k^{1/3}}) \). В силу неравенства (1.9.12) (см. [3, с. 40]) и оценки (7) соотношение (5) принимает вид

\[
\left\{ \frac{\beta^2}{(\pi \lambda)^2 (1 + V/2)} - \varepsilon \right\} \int_{2s_b}^{0.5R_b} \frac{T(r)}{r^{\lambda+1}} dr \leq \int_{2s_b}^{0.5R_b} \frac{m(r, a, f)}{r^{\lambda+1}} dr.
\]

(8)

Применяя эту оценку к \( q \) различным комплексным числам \( \{a_v\}_{v=1}^q \) и складывая полученные оценки, имеем

\[
\sum_{v=1}^q \left\{ \frac{\beta^2(a_v)}{(\pi \lambda)^2 (1 + V/2)} - \varepsilon \right\} \int_{2s_b}^{0.5R_b} \frac{T(r)}{r^{\lambda+1}} dr \leq \int_{2s_b}^{0.5R_b} \frac{m(r, a_v, f)}{r^{\lambda+1}} dr.
\]

(9)

По второй основной теореме Р. Неванлинны [1, с. 272], оценка (9) может быть переписана так:

\[
\sum_{v=1}^q \left\{ \frac{\beta^2(a_v)}{(\pi \lambda)^2 (1 + V/2)} - \varepsilon \right\} \int_{2s_b}^{0.5R_b} \frac{T(r)}{r^{\lambda+1}} dr \leq \int_{2s_b}^{0.5R_b} \frac{T(r)}{r^{\lambda+1}} dr + C(\lambda, \varepsilon) \varepsilon \int_{2s_b}^{0.5R_b} \frac{T(r)}{r^{\lambda+1}} dr,
\]

где \( \{a_v\}_{v=1}^q \) — \( q \) различных комплексных чисел, \( 0 < \varepsilon < 1 \), — фиксированное число, \( k \geq k_0 \). Поэтому

\[
\sum_{v=1}^q \beta^2(a_v, f) \leq 2(\pi \lambda)^2 (1 + V/2).
\]

(10)

Откуда и следует теорема 1 при \( \lambda \geq 0.5 \).

В случае \( \lambda < 0.5 \) функция \( \sigma \) может меняться лишь на интервале (0, \( \pi \lambda \)). Если \( \beta(a, f) \leq \pi \lambda \cdot \arctg \pi \lambda \), то снова максимальное значение \( f(\sigma) \) на интервале (0, \( \pi \lambda \)) совпадает со значением правой части равенства (6). В част-
ности, неравенство (10) остается справедливым, если в нем суммирование проводить лишь по тем значениям \( a \), для которых \( \beta (a, f) \leq \pi \lambda \sin \pi \lambda \). Теорема 1 доказана полностью.

Теорема 2 доказывается по той же схеме, что и теорема 1. При этом исходим из неравенства (26), установленного в [12], а вместо второй основной теоремы Р. Неванлины используем соответствующее утверждение для целых кривых из работы [13].

Докажем теорему 3. Для каждой непрерывной, неотрицательной функции \( \eta (r) \) такой, что \( \lim_{r \to \infty} \eta (r) = 0 \), найдется последовательность \( k_0 \to \infty \), для которой \( \omega (a; r, f) = \lim_{v \to \infty} E_{k_0} (a; r, f) \). Поэтому для каждого \( \varepsilon \), \( 0 < \varepsilon < 1 \), при \( v > v_0 \)

\[
E_{k_0} (a; \eta, f) \leq \omega (a; \eta, f) + \varepsilon.
\] (11)

Для простоты записи \( \{k_0\} \) снова обозначим \( \{k\} \). Из (11) и определения множеств \( E_k (a; \eta, f) \) находим

\[
\int_{2k_0}^{0.5R_k} \frac{m(r, a, f)}{r^{k+1}} dr \leq \int_{2k_0}^{0.5R_k} \left[ \omega (a; \eta, f) + \varepsilon \right] \frac{L (r, a, f)}{r^{k+1}} dr + \varepsilon \int_{2k_0}^{0.5R_k} \frac{T (r)}{r^{k+1}} dr. \quad (12)
\]

Оценки (8) и (12) дают

\[
\left\{ \frac{\beta^2}{(\pi \lambda)^2 (1 + V/2)} - 2e \right\} \int_{2k_0}^{0.5R_k} \frac{T (r)}{r^{k+1}} dr \leq \left\{ \omega (a; \eta, f) + \varepsilon \right\} \int_{2k_0}^{0.5R_k} \frac{L (r, a, f)}{r^{k+1}} dr. \quad (13)
\]

Заметим, что из неравенства (3.2.1) (см. [3, с. 86]) так же, как и при доказательстве оценки (4), следует, что при \( \lambda \geq 0.5 \), \( 0 < \varepsilon < 1 \), \( k \geq k_0 \)

\[
\int_{2k_0}^{0.5R_k} \frac{L (r, a, f)}{r^{k+1}} dr \leq (\pi \lambda + \varepsilon) \int_{2k_0}^{0.5R_k} \frac{T (r, f)}{r^{k+1}} dr,
\]

а при \( \lambda < 0.5 \)

\[
\int_{2k_0}^{0.5R_k} \frac{L (r, a, f)}{r^{k+1}} dr \leq \left( \frac{\pi \lambda}{\sin \pi \lambda} + \varepsilon \right) \int_{2k_0}^{0.5R_k} \frac{T (r, f)}{r^{k+1}} dr.
\]

Из оценок (13) — (15) получаем, что

\[
\omega (a; \eta, f) \equiv \begin{cases} \frac{\beta^2 (a, f)}{(\pi \lambda)^2 (1 + V/2)}, & \text{если } \lambda \geq 0.5; \\ \frac{\beta^2 (a, f)}{(\pi \lambda)^2 (1 + V/2)} \sin \pi \lambda, & \text{если } \lambda < 0.5, \quad \beta (a, f) < \pi \lambda \tan \pi \lambda & \text{если } \lambda < 0.5, \quad \beta (a, f) < \pi \lambda \tan \pi \lambda. \\ \end{cases}
\]

(16)

Рассмотрим случай, когда \( \lambda < 0.5, \quad a \beta (a, f) \geq \pi \lambda \tan \pi \lambda. \)

(17)

Положим в (5) \( \sigma = \pi \lambda \) и воспользуемся оценкой (17). Тогда в силу (12) имеем так же, как и при доказательстве неравенства (13):

\[
\left\{ \frac{2 \sin^2 (0.5 \pi \lambda)}{\cos \pi \lambda} - \varepsilon \right\} \int_{2k_0}^{0.5R_k} \frac{T (r)}{r^{k+1}} dr \leq \left\{ \omega (a; \eta, f) + \varepsilon \right\} \int_{2k_0}^{0.5R_k} \frac{L (r, a, f)}{r^{k+1}} dr.
\]
Отсюда, с учетом оценки (15), следует, что

$$
\omega (a; \eta, \lambda) \geq \frac{2 \sin^2 0.5 \pi \lambda}{\cos \pi \lambda} \cdot \frac{\sin \pi \lambda}{\pi \lambda}.
$$

(18)

Так как правые части оценок (16) и (18) не зависят от выбора функции $\eta (x)$, то теорема 3 следует из соотношений (16) и (18).

Замечая характеристики мероморфных функций на соответствующие характеристики $p$-мерных целых кривых и проводя те же рассуждения, что и при доказательстве теоремы 3, приходим к теореме 4.

3. Асимптотические свойства n-значных алгеброидных функций. Предыдущие результаты переносятся на n-значные алгеброидные функции, которые определяются из уравнений видом $A_n (z) w^n + A_{n-1} (z) w^{n-1} + \ldots + A_0 (z) = 0$ (см. [12]). Пусть для каждого $z \{x, y \} (z)$, $n = 1, 2, ..., n$, означает значения алгеброидной функции $f (z)$. Для каждого комплексного $w$ полагаем

$$
\mathcal{L} (r, w, \lambda) = \begin{cases} 
\frac{1}{\pi} \ln \left( \prod_{x=1}^{n} \frac{1}{1 + \left| f_n (x) \right|} \right), & \text{если } w \neq \infty; \\
\frac{1}{\pi} \max \left\{ \sum_{x=1}^{n} \ln | f_n (x) | \right\}, & \text{если } w = \infty.
\end{cases}
$$

Характеристика функции $f (z)$ определяется следующим образом (см. [14, c. 17]):

$$
T (r, \lambda) = \frac{1}{2 \pi} \int_0^{2 \pi} \max_k \{ \ln | A_k (re^{i\theta}) | \} d\theta,
$$

величина отклонения $f (z)$ относительно $w$ — естественным образом:

$$
\beta (w, \lambda) = \lim_{r \to \infty} \frac{\mathcal{L} (r, w, \lambda)}{T (r, \lambda)}.
$$

Используя известную теорему о связи между характеристиками целых кривых и n-значных алгеброидных функций (см. [15]) и теорему 2, приходим к такому результату.

Теорема 5. Если $f (z)$ — n-значная алгеброидная функция конечного порядка $\lambda$, то $\Sigma \beta^2 (w, \lambda) \leq 0.5 (n + 2)^2 (\pi \lambda)^2$. При этом суммируемое в левой части оценки ведется по всем $w$ в случае $\lambda \geq 0.5$, а при $\lambda < 0.5$ — лишь по тем значениям $w$, для которых $\beta (w, \lambda) \leq \pi \lambda \sin \pi \lambda$.

Аналогично из соотношения (3) получаем такую теорему.

Теорема 6. Для каждой n-значной алгеброидной мероморфной функции $f (z)$ конечного низшего порядка $\lambda$ и для любого комплексного числа $w$

$$
\omega (w, \lambda) = \begin{cases} 
\frac{\beta^2 (w, \lambda)}{(\pi \lambda)^2 (1 + \sqrt{2})}, & \text{если } \lambda \geq 0.5; \\
\frac{\beta^2 (w, \lambda)}{(\pi \lambda)^2 (1 + \sqrt{2})} \sin \pi \lambda, & \text{если } \lambda < 0.5, \lambda \beta (w, \lambda) \leq \pi \lambda \tan \pi \lambda; \\
\frac{2 \sin^2 0.5 \pi \lambda \sin \pi \lambda}{\cos \pi \lambda \pi \lambda}, & \text{если } \lambda < 0.5, \lambda \beta (w, \lambda) \geq \pi \lambda \tan \pi \lambda,
\end{cases}
$$

где $\omega (w, \lambda)$ определяется так же, как и в случае мероморфных функций.
с заменой $\ln |f(re^{i\theta}) - w|^{-1}$ величиной $\sum_{\nu=1}^{n} \ln |f_\nu(re^{i\theta}) - w|^{-1}$, если $w \neq \infty$, и с заменой $\ln |f(re^{i\theta})|$ величиной $\sum_{\nu=1}^{n} \ln |f_\nu(re^{i\theta})|$, если $w = \infty$.

4. Замечание о росте гомоморфных отображений. Используем стандартную терминологию теории гомоморфных отображений (см. [16, 17]). Пусть $M$ — $n$-мерное комплексное компактное алгебраическое многообразие, $D$ — дивизор на $M$, $L_D$ — линейное расслоение дивизора над $M$, $S_D$ — гомоморфное сечение $L_D$, обращающееся в нуль на $D$. Всюду далее $L_D$ — положительное расслоение, в $L_D$ существует метрика, с помощью которой корректно определяется $\|S_D(p)\|$ ($p \in M$). Пусть задана гомоморфная кривая, т. е. гомоморфное отображение $f : C \to M$. Тогда $\|S_D(f(z))\|$ обладает многими свойствами функции $\|\bar{G}(z)\|/\|\bar{a}\|\|\bar{G}(z), \bar{a}\|$, где $G(z)$ — $p$-мерная цепляя кривая, или, что эквивалентно с точки зрения теории роста и распределения значений, $\bar{G}$ — гомоморфное отображение $\bar{G} : C \to \mathbb{CP}^{p-1}$. При этом $\mathbb{CP}^{p-1}$ означает проективное пространство, соответствующее $\mathbb{C}^p$. В частности, для функции

$$L(r, D, f) = \max_{|z| = \infty} \ln \frac{1}{\|S_D(f(z))\|}$$

сохраняет силу наша формула для представления мероморфных функций в секторе (см. [3, c. 41 — 46], [15]). При этом характеристика гомоморфной кривой $T(r, f)$ определяется стандартным образом (см. [16, 17]).

Определение. Величиной отклонения отображения $f$ относительно дивизора $D$ называется число $\beta(D, f) = \lim_{r \to \infty} \frac{L(r, D, f)}{T(r, f)}$.

Используя формулу для представления гомоморфной кривой в секторе, получаем, что для каждой голоморфной кривой $f : C \to M$ конечного нижнего порядка $\lambda$, $\beta(D, f) \leq B(\lambda, A(D, f))$, где $A(D, f) = \lim_{r \to \infty} T^{-1}(r, f) m(r, D, f)$, а функция $B(\lambda, A)$ определена в работе ([3, c. 48]).

В теории голоморфных отображений алгебраических многообразий роль допустимой системы векторов для целых кривых играет система гладких дивизоров $\{D_j\}_{j=1}^{\infty}$, пересекающихся в общем положении (см. [17]). Мы предполагаем, что теорема 2 сохраняет силу и для голоморфных кривых $f : C \to M$. Т. е. для каждой голоморфной кривой $f : C \to M$ конечного нижнего порядка $\lambda$ и для любого конечного набора $\{D_j\}_{j=1}^{q}$ гладких дивизоров $D_j$, пересекающихся в общем положении, $\sum_{j=1}^{q} \beta^2(D_j, f) \leq C(\lambda + 1)^q$, где положительная постоянная $C$ зависит лишь от алгебраического многообразия $M$ и от линейного расслоения $L_D$, $D = \bigcup_{j=1}^{q} D_j$.

Заметим еще, что теоремы 1 и 3 сохраняют силу и для минимальных поверхностей. Соответствующие обозначения и терминологию см. в [18].

**Литература**

1. Неванлинна Р. Однозначные аналитические функции.— М.—Л.: ОГИЗ, 1941.— 388 с.
8. Петренко В. П. Величины отклонений мероморфных функций низшего порядка меньше единицы. — ДАН СССР, 1969, 187 № 1, c. 40—42.
15. Петренко В. П. О росте и распределении значений алгебраических функций. — Мат. заметки, 1979, 25, вып. 6, c. 513—522.
17. Гриффитс Ф., Кинг Дж. Теория Неванлинны и голоморфные отображения алгебраических многообразий. — М.: Мир, 1976.— 95 с.

Харьковский государственный университет

Поступила в редакцию 16.1.1979 г.