А. М. Захарин

Накопление прибыли в системе, описываемой сильно регенерирующим процессом

Пусть функционирование системы протекает в непрерывном времени \(t \geq 0 \) и описывается регенерирующим процессом \(\xi_t \) с произвольным пространством состояний \(X \), в котором имеется регенерирующее состояние \(x_0 \in X \), и пусть время пребывания в состоянии \(x_0 \) имеет показательное распределение.

Приведенное краткое описание полностью определяет дисциплину функционирования наиболее общей (с произвольной "фазой" и непрерывным временем) сильно регенерирующей системы, обладающей одним однородным марковским (сильно регенерирующим) состоянием [1, 2].

Пребывание системы в состоянии \(x \in X \) оплачивается с интенсивностью \(\phi(x) \), где \(\phi(x) \) — ограниченная измеримая функция, положительная лишь в однородном марковском состоянии, так что суммарная плата \(\eta_t \) за функционирование системы до момента \(t \geq 0 \) определяется формулой \(\eta_t = \int_0^t \phi(x_u) \, du \) (\(t \geq 0 \)).

Важная в теоретическом и прикладном отношении задача исследования времени \(\tau_z \) до момента накопления прибыли величины \(z \geq 0 \) в результате функционирования рассматриваемой системы была поставлена и решена в [1, 2].

Значительный теоретический и практический интерес представляют сильно регенерирующие системы, которые обобщают только что описанную, на случай, когда оплата пребывания в однородном марковском состоянии производится не с постоянной интенсивностью, а согласно однородному процессу c независимыми приращениями без положительных скачков. Будем считать, что различные периоды регенерации оплачиваются независимо друг от друга, что находит в соответствии со многими реальными ситуациями.

Для таких сильно регенерирующих систем справедливы аналоги соответствующих утверждений, характеризующих описанную выше систему.

Представим один из результатов такого типа, сохранив для простоты все введенные выше обозначения и считая \(x_0 = x_0 \).

Теорема. Процесс

\[
\tau_z = \begin{cases}
\infty, & \sup_{t \geq 0} \eta_t < z; \\
\inf \{t \geq 0 : \eta_t = z\}, & \sup_{t \geq 0} \eta_t \geq z \quad (z \geq 0)
\end{cases}
\]

является монотонно возрастанием однородным процессом с независимыми приращениями, кумулянта которого \(\rho = \rho(s) = \frac{1}{s} \ln M \exp(-st) \)

\((s, z \geq 0) \) представляет собой единственное (в классе ограниченных измеримых функций) решение уравнения \(\lambda + s - h(\rho) - \lambda M \exp(-\rho s - \eta \rho) = 0 \) (\(s \geq 0 \)), где через \(h(s) \) обозначена кумулянта процесса оплаты пребывания в однородном марковском состоянии — однородного процесса с независимыми приращениями без положительных скачков; \(\lambda \) — параметр показательного времени \(\theta_0 \) пребывания в однородном марковском состоянии (т. е. длительности прибыльно-убыточного подпериода); \(\theta \) — длительность убыточного подпериода; \(\eta \) — абсолютная величина убытка за время \(\theta \), т. е.

\[
\theta = \inf \{u - \theta_0 : u \geq \theta_0, \xi_u = x_0\}, \quad \eta = \int_{\theta_0}^{\theta_0 + \theta} \phi(x_u) \, du.
\]
Доказательство. Монотонность процесса \(\tau_z \) очевидна. Доказательство того, что \(\tau_z (z \geq 0) \) — однородный процесс с независимыми приращениями, основывается на стандартных рассуждениях, аналогичных проведенным в [1, 2]. После установления этого факта отпадает вопрос о существовании решения уравнения относительно кумулянты \(\rho (s) \) процесса \(\tau_z \) (поскольку \(\tau_z \) — это реальный процесс). Единственность решения обосновывается стандартными рассуждениями с использованием вида кумулянты \(h (s) \) процесса оплаты пребывания в однородном марковском состоянии \(\zeta_0 (t) \) \((t \geq 0; \zeta_0 (0) = 0) \) — однородного процесса с независимыми приращениями без положительных скачков [3].

Остановимся подробно на выводе приведенного в формулировке теоремы уравнения, поскольку при этом выводе используются некоторые нестандартные приемы.

Обозначим через \(\tau_z^0 \) время достижения уровня \(z \geq 0 \) процессом \(\zeta_0 (t) \).

Согласно формуле полной вероятности введенные величины удовлетворяют стехастическому соотношению

\[
\tau_z = \tau_z^0 \delta \left\{ \tau_z^0 \leq \theta_0 \right\} + (\theta_0 + \theta + \tau_z - \tau_z (\theta_0) + \eta) \times \delta \left\{ \tau_z^0 > \theta_0 \right\},
\]

где \(\delta (B) \) — индикатор случайного события \(B \), а величины \(\tau_z, \tau_z^0 \) одинаково распределены и независимы. Переходя в полученном стехастическом соотношении к преобразованиям Лапласа, после элементарных преобразований с учетом введенных обозначений получаем

\[
\exp (-z \rho (s)) = \exp (-z \rho (0)) = \lambda M \int_0^{\tau_z^0} \exp (- (\lambda + s) u) \exp (-s \theta) \times \\
\exp \left(- (z - \zeta_0 (u) + \eta) \rho (s) \right) du,
\]

где через \(\rho (0) \) обозначена кумулянта процесса \(\tau_z^0 \) \((z \geq 0) \). Обозначим левую часть полученного равенства через \(A_1 \), а правую — через \(A_2 \) и займемся ее преобразованием. Нетрудно убедиться, что

\[
A_2 = \lambda M \exp (-\theta s - \eta \rho) \int_0^{\tau_z^0} \exp \left(- (\lambda + s) u - \rho [z - \zeta_0 (u)] \right) du.
\]

Интеграл в правой части последнего соотношения удобно представить в виде разности двух интегралов, которые вычислим отдельно:

\[
M \int_0^{\tau_z^0} \exp \left(- (\lambda + s) u - \rho [z - \zeta_0 (u)] \right) du = \exp (-z \rho) \int_0^{\tau_z^0} \exp (- (\lambda + s) u) \times \\
\times M \exp (\rho \zeta_0 (u)) du = \exp (-z \rho) \int_0^{\tau_z^0} \exp \left(- [\lambda + s - h (\rho)] u \right) du = \\
= \exp (-z \rho) [\lambda + s - h (\rho)]^{-1}.
\]

При вычислении второго интеграла будет использован тот факт, что из соотношения \(\tau_z^0 = y \) следует равенство \(\zeta_0 (y) = z \):

\[
M \int_0^{\tau_z^0} \exp \left(- (\lambda + s) u - \rho [z - \zeta_0 (u)] \right) du = \int_0^{\tau_z^0} P \{ \tau_z^1 \leq dy \} \int_y^{\infty} \exp (- (\lambda + s) u) \times \\
\times M \exp \left(- \rho [\zeta_0 (y) - \zeta_0 (u)] \right) du = \int_0^{\tau_z^0} P \{ \tau_z^1 \leq dy \} \exp (-yh (\rho)) \times
\]

806
Теперь становится очевидным представление \(A_2 = A_1 \lambda M \exp \left(- \theta s - \eta \rho \right) \times \times \left[\lambda + s - h (\rho) \right]^{-1} \times \exp \left(- y (\lambda + s) \right) \times \times P \left\{ x_0 \in dy \right\} = \left[\lambda + s - h (\rho) \right]^{-1} \exp \left(- z \eta \rho (\lambda + s) \right) \).

Замечание 1. Приведенный вывод уравнения, существенно опирающийся на наличие марковского свойства времени пребывания в однородном марковском состоянии, дает основание считать целесообразным в некоторых случаях даже искусственное введение марковской (показательной или геометрической) случайной величины. Метод введения экспоненты был предложен и разработан И. И. Ежовым. Применение этого метода в ряде случаев уже привело к успеху [1, 2, 4].

Замечание 2. Как видно из доказательства, дисциплина накопления убытков в исследуемой системе может быть любой, поскольку определяющая формула для величины \(\eta \) при выводе основного уравнения нигде не использовалась.

Литература

1. Бороздин О. П., Ежов И. И. Об одном классе граничных функционалах для сильно регенерирующих случайных процессов.— Теория вероятностей и математическая статистика, 1978, вып. 18.— с. 9—19.
3. Боровков А. А. Вероятностные процессы в теории массового обслуживания.— М.: Наука, 1972.— 368 с.
4. Бороздин О. П. Об одном подходе к исследованию времени достижения уровня процессом с зависимыми приращениями.— В кн.: Тезисы докладов Второй Вильнюсской конференции по теории вероятностей и математической статистике. Вильнюс. Т. 1, 1977, с. 61—62.

Институт кибернетики АН УССР

Поступила в редакцию 12.VI 1979 г.