Ле сун Кан

Квазипериодические колебания квазилинейных систем с автономным авторегулируемым запаздыванием

Настоящая работа посвящена установлению условия существования квазипериодических решений квазилинейных систем с автономным авторегулируемым запаздыванием, описывающих колебательные процессы, и их построению. Запаздывание называется автономным авторегулируемым, если оно зависит от фазовых координат и не зависит от времени. Предложение о зависимости запаздывания от искомой функции естественно для многих реальных систем [1, 2] Аналогичная задача для периодических решений указанной системы была рассмотрена в [3] и в частном случае в [4].

818
1. Рассматривается система уравнений

\[
\frac{dx}{dt} = Ax + Bx(t - \Delta),
\]
(1)

где \(x\) — \(n\)-мерный вектор, \(A, B \in \mathbb{R}^{n \times n}\), постоянные матрицы, \(\Delta = \Delta_0 + \epsilon f(x)\), причем \(\Delta_0 > 0\), \(f(x)\) — непрерывно дифференцируемая функция в некоторой \(G\) переменных \(x, \epsilon\) — малый параметр.

Допустим, что характеристическое уравнение порождающей системы

\[
\frac{dx^0}{dt} = Ax^0 + Bx^0(t - \Delta_0)
\]
(2)

имеет простые корни вида \(\pm i\lambda_j, (j = 1, \ldots, m)\), где \(\lambda_j\) рационально независимы, а остальные корни имеют достаточно большую по величине отрицательную вещественную часть. В этом случае система (2) допускает семейство квазипериодических решений вида

\[
x^0(t) = \sum_{j=1}^{m} a_j (X^0 e^{i\lambda_j t + a_j} + \overline{X}^0 e^{-i\lambda_j t + a_j}),
\]
(3)

где \(a_j, \alpha_j (j = 1, \ldots, m)\) — произвольные постоянные, \(X^0\) — собственный вектор, соответствующий корню \(i\lambda_j\), \(X^0\) — вектор, комплексно сопряженный с \(X^0\).

Сопряженная с (2) называется система

\[
\frac{dy^0}{dt} + A'g^0 + B'y^0(t + \Delta_0) = 0,
\]
(4)

где \(A', B'\) — транспонированные к \(A, B\) матрицы. В этом случае система (4) допускает семейство квазипериодических решений

\[
y^0(t) = \sum_{j=1}^{m} b_j (Y^0 e^{i\beta_j t + b_j} + \overline{Y}^0 e^{-i\beta_j t + b_j}),
\]
(5)

где \(b_j, \beta_j\) — произвольные постоянные, \(Y^0\) — собственный вектор, соответствующий корню \(-\lambda_j\) и удовлетворяющий условию нормировки \(X^0Y^0 = 1\), \(Y^0\) — вектор, комплексно сопряженный с \(Y^0\).

Наша задача — установить условия существования квазипериодических решений системы (1), соответствующих семейству (3), и построить их.

2. С (1) ассоциируем систему уравнений в частных производных

\[
\frac{\partial u}{\partial \phi} (\lambda + \epsilon h) = Au + Bu_\Delta,
\]
(6)

где \(\psi = (\psi_1, \ldots, \psi_m), \lambda = (\lambda_1, \ldots, \lambda_m), h = (h_1, \ldots, h_m), u = u(\psi), u_\Delta = u(\psi - \lambda \Delta_0 - \epsilon (h \Delta_0 + \lambda F + \epsilon h F)), F = f(x)|_{x = u(\psi)}, h = h(\epsilon)\) — постоянный вектор, подлежащий определению. Соответствующая порождающая система (6) имеет вид

\[
\frac{\partial u^0}{\partial \phi} \lambda = Au^0 + Bu^0_\Delta,
\]
(7)

где \(u^0_\Delta = u^0(\psi - \lambda \Delta_0)\).

По отношению к системе (6) имеет место следующее утверждение.

Лемма 1. Если \(u(\psi, \epsilon)\) — 2-периодическое по \(\psi\) решение системы (6), то \(x(t, \epsilon) = u((\lambda + \epsilon h) t + \alpha, \epsilon)\) — квазипериодическое по \(t\) с частотным базисом \(\lambda_1 + \epsilon h_1, \ldots, \lambda_m + \epsilon h_m\) решение системы (1).
Доказательство очевидно. Пусть \(u(\psi, \varepsilon) \) — периодическое решение системы (6), обращающееся при \(\varepsilon = 0 \) в периодическое решение \(u^{(0)}(\psi) = \sum_{j=1}^{m} a_j^{(0)}(X^{(0)} e^{i\psi j} + \overline{X^{(0)}} e^{-i\psi j}) \) порождающей системы (7), \(h^{(0)} = h(0) \).

Получаем лемму.

Лемма 2. Для того чтобы система (6) имела периодическое по \(\psi \) решение периода \(2\pi \), необходимо, чтобы выполнялись условия

\[
\begin{align*}
 i a_j^{(0)} h_j^{(0)} (1 + \Delta e^{-i\psi j} B X^{(0)} Y^{(0)}) + \frac{1}{(2\pi)^m} \int_{K_m} B \frac{\partial u^{(0)}_j}{\partial \psi} \lambda F^{(0)} Y^{(0)} e^{-i\psi j} d\psi &= 0 \\
 (j = 1, \ldots, m),
\end{align*}
\]

где

\[
 F^{(0)} = F(u^{(0)}), \quad K_m = \{ \psi : 0 \leq \psi \leq 2\pi \}.
\]

Доказательство. Пусть система (6) допускает периодическое по \(\psi \) решение периода \(2\pi \) \(u^{(0)}(\psi) \). Рассмотрим линейную неоднородную систему

\[
\frac{\partial u_j}{\partial \psi} \lambda = A u + B u^{*}_{\Delta} + B (u^{*}_{\Delta} - u^{*}_{\Delta} - \varepsilon \frac{\partial u^{*}}{\partial \psi} h.
\]

Эта система имеет, очевидно, решение \(u^{*}(\psi, \varepsilon) \) и, следовательно, допускает периодическое решение. Тогда согласно работе [5] должны выполняться условия

\[
\int_{K_m} \left(B (u^{*}_{\Delta} - u^{*}_{\Delta}) - \varepsilon \frac{\partial u^{*}}{\partial \psi} h \right) Y^{(0)} e^{-i\psi} d\psi = 0 \quad (j = 1, \ldots, m).
\]

Полагая здесь \(\varepsilon = 0 \) и учитывая, что \(u^{*}(\psi, \varepsilon) \) при \(\varepsilon = 0 \) обращается в \(u^{(0)}(\psi) \), получаем равенства (8).

На основании лемм 1 и 2 можно доказать следующую теорему.

Теорема 1. Для того чтобы система (1) имела квазипериодическое по \(t \) решение с частотным базисом \(\lambda_1 + \varepsilon t_1, \ldots, \lambda_m + \varepsilon t_m \), необходимо, чтобы \(a_j^{(0)}, h_j^{(0)} \) удовлетворяли равенствам

\[
\begin{align*}
 i a_j^{(0)} h_j^{(0)} (1 + \Delta e^{-i\psi j} B X^{(0)} Y^{(0)}) + \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} B \frac{dx^{(0)}(t - \Delta)}{dt} f(x^{(0)}(t)) y^{(0)} dt &= 0 \\
 (j = 1, \ldots, m),
\end{align*}
\]

где \(y^{(0)}(t) = Y^{(0)} e^{-i(\lambda_1 t + \varepsilon t)} \) — периодические решения системы (4).

Доказательство. На основании леммы 1 периодическим решением системы (6) \(u(\psi, \varepsilon) \) соответствуют квазипериодические решения системы (1) \(x(t, \varepsilon) = u((\lambda + \varepsilon t_1) t + \alpha, \varepsilon) \), а в силу леммы 2 и эквивалентности выражений (8) и (11) теорема справедлива. Равенства (11) записаны в комплексной форме. Отделяя в них вещественную и мнимую части, получаем систему уравнений для определения величин \(a_j^{(0)}, h_j^{(0)} \):

\[
\begin{align*}
 P^{(0)}(a_1^{(0)}, \ldots, a_m^{(0)}, h_1^{(0)}, \ldots, h_m^{(0)}) &= 0, \\
 Q^{(0)}(a_1^{(0)}, \ldots, a_m^{(0)}, h_1^{(0)}, \ldots, h_m^{(0)}) &= 0 \\
 (j = 1, \ldots, m).
\end{align*}
\]

Для установления условия существования периодических решений системы (6), согласно статье [6], рассматриваем вспомогательную систему

\[
\frac{\partial \phi}{\partial \psi} (\lambda + \varepsilon t) = A v + B u_{\Delta} + \sum_{j=1}^{n} \left(W_j X^{(0)} e^{i\psi j} + \overline{W_j X^{(0)}} e^{-i\psi j} \right),
\]

820
Предположим, что $W_j = \overline{W_j}$, где $\overline{W_j}$ — комплексно сопряженная с W_j.

Имеем место теорема.

Теорема 2. Система (13) всегда имеет периодическое по ψ решение периода 2π, зависящее от $2m$ произвольных постоянных a_j, h_j ($j = 1, \ldots, m$) и малого параметра ε, которое при $\varepsilon = 0$ обращается в выражение

$$V^{(0)} = \sum_{j=1}^{m} a_j (X^{(0)} e^{i\psi j} + \overline{X^{(0)}} e^{-i\psi j}).$$

Доказательство. Для доказательства теоремы воспользуемся методом последовательных приближений. За нулевое приближение примем

$$V^{(0)} = \sum_{j=1}^{m} a_j (X^{(0)} e^{i\psi j} + \overline{X^{(0)}} e^{-i\psi j}), \quad W_j^{(0)} = 0 \quad (j = 1, \ldots, m). \quad (14)$$

В качестве n-го приближения для решения системы (13) примем периодическое по ψ периодом 2π решение системы

$$\frac{dV^{(n)}}{d\psi} = \frac{\partial V^{(n)}}{\partial \psi} h = A V^{(n)} + B V^{(n-1)} + B (V^{(n-1)} - V^{(n-1)}) - \varepsilon \frac{\partial V^{(n-1)}}{\partial \psi} h +$$

$$+ \sum_{j=1}^{m} \left(W_j^{(n)} X^{(0)} e^{i\psi j} + \overline{W_j^{(n)}} \overline{X^{(0)}} e^{-i\psi j} \right),$$

$$W_j^{(n)} + \frac{1}{(2\pi)^m} \sum_{k=1}^{K_m} \left(B (V^{(n-1)} - V^{(n-1)}) - \varepsilon \frac{\partial V^{(n-1)}}{\partial \psi} h \right) Y^{(0)} e^{-i\psi j} d\psi = 0 \quad (j = 1, \ldots, m). \quad (15)$$

Производя оценки $V^{(n)} - V^{(0)}, W_j^{(n)}$, а также $V^{(n)} - V^{(n-1)}, W_j^{(n-1)} - W_j^{(n-1)}$, убеждаемся в том, что при достаточно малом ε и при a_j, h_j, ограниченных некоторыми константами, последовательности $\{V^{(n)}(\psi)\}, \{W_j^{(n)}(\psi)\}$ равномерно сходятся к некоторым функциям $V(\psi, a_j, h_j, \varepsilon), W_j(\psi, a_j, h_j, \varepsilon)$. Они непрерывно дифференцируемы по ε, и, кроме того, $V(\psi, a_j, h_j, \varepsilon)$ непрерывная периодическая по ψ периода 2π. По отношению к системе (6) справедлива такая теорема.

Теорема 3. Для того чтобы система (6) имела периодическое по ψ периодом 2π решение и (ψ, ε), обращающееся при $\varepsilon = 0$ в решение

$$V^{(0)} = \sum_{j=1}^{m} a_j^{(0)} (X^{(0)} e^{i\psi j} + \overline{X^{(0)}} e^{-i\psi j}),$$

порождающей системы (7), необходимо и достаточно, чтобы система уравнений

$$P_j(a_1, \ldots, a_m, h_1, \ldots, h_m, \varepsilon) = 0, \quad Q_j(a_1, \ldots, a_m, h_1, \ldots, h_m, \varepsilon) = 0 \quad (j = 1, \ldots, m), \quad (16)$$

где $P_j = \text{Re} W_j, \ Q_j = \text{Im} W_j$, допускала при достаточно малом ε решение

$$a_j = a_j(\varepsilon), \ h_j = h_j(\varepsilon) \quad (j = 1, \ldots, m),$$

удовлетворяющее равенствам

$$a_j(0) = a_j^{(0)}, \ h_j(0) = h_j^{(0)}, \quad (17)$$

где $a_j^{(0)}, h_j^{(0)}$ — решение системы (12).
В частности, при выполнении условия

$$\frac{\partial}{\partial \psi} (P_1, \ldots, P_m, Q_1, \ldots, Q_m) \mid_{a_j=a_j^0, h_j=h_j^0} \neq 0$$

(18)

система (16) допускает единственное решение. Поэтому система (6) допускает единственное периодическое решение. Если же это условие не выполняется, то задача требует дополнительного анализа [7]. В случае аналитичности периодическое решение системы (13) можно отыскивать в виде рядов

$$v = \sum_{n=0}^{\infty} e^{n\psi} v^{(n)} (\psi), \quad W_j = \sum_{n=0}^{\infty} e^{n\psi} W_j^{(n)} (j = 1, \ldots, m).$$

(19)

Подставляя ряды (19) в систему (13) и приравнивая коэффициенты при одинаковых степенях e, получаем линейные системы дифференциальных уравнений, определяющие величины $v^{(n)} (\psi), W_j^{(n)}$

$$\frac{\partial^2 v^{(0)}}{\partial \psi^2} \cdot \psi = A v^{(0)} + B v^{(0)}_\Lambda, \quad W_j^{(0)} = 0 \quad (j = 1, \ldots, m),$$

(20)

$$\frac{\partial^2 v^{(1)}}{\partial \psi^2} + \psi = A v^{(1)} + B v^{(0)} + B \cdot \frac{\partial^2 v^{(0)}_\Lambda}{\partial \psi} (h \Delta_0 + \lambda f^{(0)}) - \frac{\partial v^{(0)}}{\partial \psi} h +$$

$$+ \sum_{j=1}^{m} (W_j^{(0)} \chi^{(0)} e^{-i\psi_j} + W_j^{(1)} \bar{\chi}^{(0)} e^{-i\psi_j}),$$

$$W_j^{(1)} = \frac{1}{(2\pi)^m} \int \left[\frac{B \cdot \partial^2 v^{(0)}_\Lambda}{\partial \psi^2} (h \Delta_0 + \lambda f^{(0)}) + \frac{\partial v^{(0)}}{\partial \psi} h \right] Y_j^{(0)} e^{-i\psi_j} d\psi \quad (j = 1, \ldots, m),$$

(21)

$$\frac{\partial^2 v^{(2)}}{\partial \psi^2} \cdot \psi = A v^{(2)} + B v^{(1)} + B \frac{\partial^2 v^{(1)}_\Lambda}{\partial \psi} (\lambda f^{(1)} + h f^{(0)}) - B \frac{\partial v^{(1)}}{\partial \psi} (h \Delta_0 + \lambda f^{(0)}) +$$

$$+ \frac{1}{2} B \frac{\partial^2 v^{(0)}_\Lambda}{\partial \psi^2} (h \Delta_0 + \lambda f^{(0)})^2 - \frac{\partial v^{(1)}}{\partial \psi} h + \sum_{j=1}^{m} (W_j^{(2)} \chi^{(1)} e^{-i\psi_j} + W_j^{(2)} \bar{\chi}^{(1)} e^{-i\psi_j}),$$

(22)

$$W_j^{(2)} = \frac{1}{(2\pi)^m} \int \left[\frac{B \cdot \partial^2 v^{(0)}_\Lambda}{\partial \psi^2} (\lambda f^{(1)} + h f^{(0)}) + B \frac{\partial^2 v^{(1)}_\Lambda}{\partial \psi} (h \Delta_0 + \lambda f^{(0)}) -$$

$$- \frac{1}{2} B \frac{\partial^2 v^{(0)}_\Lambda}{\partial \psi^2} (h \Delta_0 + \lambda f^{(0)})^2 + \frac{\partial v^{(1)}}{\partial \psi} h \right] Y_j^{(0)} e^{-i\psi_j} d\psi \quad (j = 1, \ldots, m),$$

Очевидно, что системы (20) — (22) допускают периодические по ψ период 2π решения. Подставляя $v^{(n)} (\psi), W_j^{(n)} (j = 1, \ldots, m)$, находящиеся из указанных систем, в (19), получим периодическое решение системы (13), представляющее в виде рядов по целым степеням e и величины W_j. Отсюда, подставляя решения $a_j=a_j^1 (\psi), h_j=h_j^1 (\psi)$ системы (16) и $\psi=(\lambda + e\Delta t) t + \alpha$ в выражение $v (\psi, \alpha)$ (19), получим квазипериодическое по t решение с частотным базисом $\lambda_1 + e\Delta_1, \ldots, \lambda_m + e\Delta_m$ исходной системы (1). Полученные результаты могут быть обобщены на систему вида

$$\frac{dx}{dt} = Ax + Bx(t+\Delta) + e F(x, x(t+\Delta), e),$$

(23)

gде $\Delta = \Delta_0 + e\Delta (x)$. 822
3. Как пример рассмотрим уравнение

\[
\frac{dx}{dt^4} + 3 \frac{d^2x}{dt^2} + 2x(t - \Delta) = 0, \quad (24)
\]

где \(\Delta = \varepsilon (\gamma - \beta x^2) \), \(\gamma > 0, \beta > 0, \varepsilon \) — малый параметр.

Характеристическое уравнение порождающего уравнения имеет корни \(\pm i, \pm i \sqrt{2} \). Поэтому решение порождающего уравнения таково:

\[
x^{(n)} = a_1 (e^{i(t + \alpha_1)} + e^{-i(t - \alpha_1)}) + a_2 (e^{i(t + \alpha_2)} + e^{-i(t + \alpha_2)}), \quad (25)
\]

где \(a_1, a_2, \alpha_1, \alpha_2 \) — произвольные постоянные.

С (24) ассоциируем уравнение в частных производных

\[
\left(\frac{\partial}{\partial \varphi_1} (1 + \varepsilon h_1) \right) u + 3 \left(\frac{\partial}{\partial \varphi_1} (1 + \varepsilon h_1) \right) + \left(\frac{\partial}{\partial \varphi_2} (V^2 + \varepsilon h_2) \right) u + 2u_\Delta = 0, \quad (26)
\]

где \(u_\Delta = u (\varphi_1 - \varepsilon (1 + \varepsilon h_1) F, \varphi_2 - \varepsilon (V^2 + \varepsilon h_2) F, F = \gamma - \beta u^2 \).

Вспомогательное уравнение имеет вид

\[
\left(\frac{\partial}{\partial \varphi_1} (1 + \varepsilon h_1) \right) u + 3 \left(\frac{\partial}{\partial \varphi_1} (1 + \varepsilon h_1) \right) + \left(\frac{\partial}{\partial \varphi_2} (V^2 + \varepsilon h_2) \right) u + 2u_\Delta = \sum_{i=1}^{2} (\mathcal{W}_i e^{i\varphi_i} + \mathcal{W}_i e^{-i\varphi_i}),
\]

где \(\mathcal{W}_j = \frac{\varepsilon}{2\pi^2} \int_0^{2\pi} \left(\left(\frac{\partial}{\partial \varphi_1} + \frac{\partial}{\partial \varphi_2} V^2 \right) F - 3 \frac{\partial^2 \varphi_1}{\partial \varphi_1^2} h_1 - 3 V^2 \frac{\partial^2 \varphi_2}{\partial \varphi_2^2} h_2 - 3 \frac{\partial^2 \varphi_1}{\partial \varphi_1 \partial \varphi_2} (h_2 + h_1 V^2) - 2 \frac{\partial^2 \varphi_1}{\partial \varphi_1^2} h_1 - 4 V^2 \frac{\partial^2 \varphi_2}{\partial \varphi_2^2} h_2 - 2 \frac{\partial^2 \varphi_1}{\partial \varphi_1 \partial \varphi_2} (3 V^2 h_1 + h_2) - 2 \frac{\partial^2 \varphi_1}{\partial \varphi_1 \partial \varphi_2} (3 V^2 h_1 + h_2 V^2) + e \ldots \right) \times e^{-i\varepsilon \varphi_1 \frac{d\varphi_1}{d\varphi_1} d\varphi_2} = 0 \quad (j = 1, 2).
\]

Применяя изложенный метод, из уравнения (27) получаем

\[
v = 2a_1 \cos \varphi_1 + 2a_2 \cos \varphi_2 + \varepsilon \left[\frac{1}{14} \beta a_1^2 \sin 3 \varphi_1 + \frac{V^2}{68} \beta a_2^3 \sin 3 \varphi_2 + \frac{-10 + 16 V^2}{103} \beta a_1^2 a_2 \sin (2 \varphi_1 + \varphi_2) - \frac{10 + 16 V^2}{103} \beta a_1^2 a_2 \sin (2 \varphi_1 - \varphi_2) + \frac{-38 + 29 V^2}{34} \beta a_1 a_2^3 \sin (\varphi_1 + 2 \varphi_2) - \frac{-38 + 29 V^2}{34} \beta a_1 a_2 \sin (\varphi_1 - 2 \varphi_2) \right] + \varepsilon^2 \ldots, \quad (28)
\]

\[
W_1 = 2a_1 \left[h_1 - (\gamma - \beta (a_1^2 + 2a_2^2)) \right] \varepsilon + \varepsilon^2 \ldots,
\]

\[
W_2 = 2 V^2 a_2 \left[3h_2 - (\gamma - \beta (a_1^2 + 2a_2^2)) \right] \varepsilon + \varepsilon^2 \ldots. \quad (29)
\]
Приравнивая нулю правые части выражений (29), получаем уравнения, определяющие \(a_j = a_j(e) \), \(h_j = h_j(e) \) (\(j = 1, 2 \)). Подставляя полученные значения \(a_j(e), h_j(e) \) в (28), получаем периодическое решение уравнения (26).
Подставляя, наконец, \(\psi_1 = (1 + e h_1) t + \alpha_1, \ psi_2 = (\sqrt{2} + e h_2) t + \alpha_2 \) соответственно в (28), получаем искомое квазипериодическое решение уравнения (24), соответствующее решению (25).

В первом приближении квазипериодическое решение уравнения (24) имеет вид

\[
x = 2 \sqrt{\frac{\gamma}{3 \rho}} \left\{ \cos (t + \alpha_1) + \cos (\sqrt{2} t + \alpha_2) + \frac{e \gamma}{6} \left[\frac{1}{14} \sin 3(t + \alpha_1) + \frac{\sqrt{2}}{6} \sin 3(\sqrt{2} t + \alpha_2) + \frac{-10 + 16 \sqrt{2}}{103} \sin ((2 + \sqrt{2}) t + 2 \alpha_1 + \alpha_2) - \frac{10 + 16 \sqrt{2}}{103} \sin ((2 - \sqrt{2}) t + 2 \alpha_1 - \alpha_2) + \frac{-38 + 29 \sqrt{2}}{34} \sin (1 + 2 \sqrt{2} t + \alpha_1 + 2 \alpha_2) - \frac{38 + 29 \sqrt{2}}{34} \sin ((1 - 2 \sqrt{2}) t + \alpha_1 - 2 \alpha_2) \right] \right\}, \tag{30}
\]

где \(\alpha_1, \alpha_2 \) — произвольные постоянные.
Условие существования единственного решения рассмотренного уравнения в этом случае всегда удовлетворяется.

ЛИТЕРАТУРА

1. **Теодорчик К. Ф.** Автокоебатительные системы.— **М. Л.**: Гостехиздат, 1952.— 243 с.
2. **Норкин С. Б.** Диагональные уравнения второго порядка с запаздывающим аргументом.— **М.** Наука, 1964.— 354 с.
3. **Гнезберж Р. Е.** Колебания линейных систем с автономным автогенохронным запаздыванием.— Дифференциальные уравнения, 1970, 6, № 7, с. 1257—1264.
4. **Корневский Д. Г.** Автокоебатительные режимы в системах с одной степенью свободы.— Прикл. механика, 1966, 2, № 12, с. 119—122.

Кievский государственный университет