Конечные неразрешимые группы с дополняемыми неметациклическими подгруппами

Теорема. В конечной неразрешимой группе G тогда и только тогда дополняемы все неметациклические подгруппы, когда $G = A \times B$, где B — метациклическая вполне факторизуемая 2^r-группа, $3^s \nmid |B|$, $5^t \nmid |B|$ и выполняются одно из следующих утверждений:

1) $A \cong PSL(2, 5)$, $PSL(2, 11)$ или $SL(2, 5)$;
2) $A \cong SL(2, 11)$, а $B = C \times D$, $|C| = 1$ или 5 и $11^2 \nmid |D|$, $5 \nmid |D|$;
3) $A \cong PGL(2, 11)$, $11^2 \nmid |B|$.

Пусть G — произвольная неметациклическая группа, обладающая свойством: любая неметациклическая подгруппа из G дополнима в G. Тогда все неметациклические подгруппы и неметациклические фактор-группы G обладают тем же свойством. Кроме того, фактор-группы G по ее неметациклическому нормальному делителю вполне факторизуемы. Отметим, что слово «группа» ниже означает «конечная группа».

Лемма 1. Простая группа G с дополняемыми неметациклическими подгруппами изоморфна $PSL(2, 5)$ или $PSL(2, 11)$.

Отсюда и из результатов работ [8, 9] следует, что G изоморфна одной из групп: $PSL(2, p^n)$, $p > 2$; $PSL(3, q)$, $PSU(3, q^2)$, q — нечетно; A_7 или M_{11}.

б). $G \cong PSL(3, q)$. Если $q = p^n$, то сильвовская п-подгруппа G_p группы G в G недополнима [10]. Следовательно, G_p — метациклическая группа. Отсюда и из теорем 7.1 гл. II, 16.5 и 16.6 гл. III работы [5] следует, что $q = 2$. Но тогда $G \cong PSL(3, 2) \cong PSL(2, 7)$. Так как в $PSL(2, 7)$ недополнима подгруппа, изоморфная A_4, то рассматриваемый случай невозможен.

в). $G \cong PSU(3, q^2)$, q — нечетное число. Группа G содержит подгруппу $A = B \times C$, где $|B| = q^2$, $|C| = (q^2 - 1)/d$, $d = (3, q + 1)$ и $|B'| = |Z(B)| = q$, Укр. мат. журн., 1987, т. 39, № 5
причем $A' = B$ и C — циклическая группа (см. [15, c. 242—245]). Так как в силу теоремы 8.6 гл. IV [5] B — неметациклическая группа, то $C \cong A \times B$ — вполне факторизуемая группа. Это противоречит ее цикличности и соотношению $4 \left| \frac{d^2-1}{d} \right| = |C|$. Следовательно, этот случай невозможен.

g). $G \cong A_4$. Группа G содержит подгруппу изоморфную $A_6 \cong PSL(2, 9)$, а в последние есть недопустимые неметациклические подгруппы. Пример с противоречием.

Следствие. Пусть G — простая минимальная неразрешимая группа. Если в G допустимы все неметациклические подгруппы, то $G \cong A_3$.

Лемма 2. Если G — полупростая группа с допустимыми неметациклическими подгруппами, то G изоморфна одной из следующих групп: $PSL(2, 5)$, $PSL(2, 11)$ или $PGL(2, 11)$.

Доказательство. Пусть G — непростая группа и K — ее минимальный нормальный делитель. Тогда ввиду допустимости в G неметациклических подгрупп K — простая группа, а G/K — вполне факторизуемая. Так как ввиду полупростоты G, $G/K = 1$, то в силу леммы 1 G изоморфен $PGL(2, 5)$ или $PGL(2, 11)$.

Предположим, что $G \cong PGL(2, 5)$. Если T — дополнение в G к подгруппе $B \cong A_4$ из $K \cong PSL(2, 5)$, то $|T| = 10$. Следовательно, T содержится в нормализаторе $N = N_G(T)$ силосковой 5-подгруппы T_5 из T в группе G. Но N — полупроецное производство T_5 на циклическую группу порядка 4 [5]. Значит, $T \subset K$ и потому $T \cap B = 1$. Из полученного противоречия следует, что рассматриваемый случай невозможен.

Нетрудно убедиться, что в группе $PGL(2, 11)$ все неметациклические подгруппы допустимы. В частности, подгруппу $B \cong A_4$ дополняет нормализатор силосковой 11-подгруппы. Лемма доказана.

Лемма 3. Пусть G — неразрешимая группа с допустимыми неметациклическими подгруппами. Если $1 \neq R = R(G) = 2$-группа, то $G \cong SL(2, 5)$ или $SL(2, 11)$.

Доказательство. Ввиду леммы 2 G/R изоморфна одной из групп: $PSL(2, 5)$, $PSL(2, 11)$, $PGL(2, 11)$, $PSL(2, 11)$, $PGL(2, 11)$, $PSL(2, 11)$,

1). $G/R \cong PSL(2, 5)$. Так как $PSL(2, 5)$ не содержит подгрупп порядка 15 и 20, то G — метациклическая, а RG — нильпотентная группа. Поэтому в прообразе подгруппы порядка 12 фактор-группы G/R в группе G элемент порядка 3 действует нерегулярно. Следовательно, в силу леммы В. Д. Мазурова [4] G_2 — группа кватернионов порядка 8 и $|R| = 2$. Применим лемму Шура [12], получаем $G \cong SL(2, 5)$.

2). $G/R \cong PSL(2, 11)$. Аналогичными рассуждениями убеждается, что $G \cong SL(2, 11)$.

3). $G/R \cong PGL(2, 11)$. Тогда если A — прообраз в G подгруппы $A \cong PSL(2, 11)$ из G, то по предыдущему $A \cong SL(2, 11)$. Следовательно, $G = A \times (x)$, где $x^2 = 1$ и $G/Z(A) \cong PGL(2, 11)$. Нетрудно убедиться, что нормализатор $N = N_G(G_2)$ силосковой 5-подгруппы G_5, в группе G является неметациклической группой порядка 40. Так как G не содержит подгрупп порядка 13-3, то N недопустим в G. Следовательно, этот случай невозможен. Лемма доказана.

Лемма 4. Пусть G — неразрешимая группа с допустимыми неметациклическими подгруппами. Если $G/R(G)$ изоморфна $PSL(2, 5)$, то $G = A \times B$, где $A \cong PSL(2, 5)$ или $SL(2, 5)$, а B — метациклическая вполне факторизуемая 2-группа, причем $5^2 \nmid |B|$, $3^2 \nmid |B|$.

Доказательство. Пусть G — контрпример минимального порядка к лемме. Тогда ввиду леммы $3R = R(G)$ — не 2-группа. Далее, R — метациклическая группа и, значит, сверхразрешима. Поэтому подгруппа 548
Р дисперсивна по Оре. Пусть p — наибольшее простое число, делящее $|R|$, и P — силовая p-подгруппа из R. Тогда $P \triangleleft G$. Рассмотрим следующие случаи.

а). $p > 5$. По теореме Цассенхаузена [5, с. 126] $G = P \times H$. В силу выбора группы G имеем место разложение $H = A \times C$, где $A \cong PSL(2, 5)$ или $SL(2, 5)$, а C — метаакциклическая вполне факторизуемая $2'$-группа, причем $5^2 \nmid |C|$, $3^3 \nmid |C|$. Тогда $G = P \times (A \times C)$. Если $C \neq 1$, то $PA \neq G$ и поэтому $PA = P \times A$ и $G = A \times PC$. что противоречит выбору G. Пусть $C = 1$, т. е. $G = P \times A$. Так как подгруппа $P(A)$ не метаакциклическая и, значит, дополняема в G, то $P(A) = 1$. Ввиду недополняемости в группе A ее силовой 2-подгруппы T группа PT метаакциклична. Отсюда, из теоремы Машке [5] и из неметаакцикличности нормализатора $N_A(T)$ следует $[P, T] = 1$. Но тогда $[P, A] = 1$. Пришли к противоречию.

б). $p = 5$. Тогда $G/P = G = A \times B$, где $A \cong PSL(2, 5)$ или $SL(2, 5)$ и $|B| = 3$ или 1. Пусть сначала $|B| = 3$. Тогда если A — прообраз подгруппы A в G, то в силу выбора группы G подгруппа A разных $A \times B_1$, где $|B_1| = 5$, а $A \cong PSL(2, 5)$ или $SL(2, 5)$. Отсюда из теоремы Гашотта [5] следует $G = B_1 \times G_1$. В силу выбора группы $G G_1 = D \times V$, где $D \cong PSL(2, 5)$ или $SL(2, 5)$, а $|V| = 5$. Противоречие.

Пусть теперь $|B| = 1$. Если P — абелева группа, то $[P, G_1] = 1$, так как $PSL(2, 5)$ и $SL(2, 5)$ не содержат подгрупп индекса 3. Поэтому $C_5(P) = G$. Пусть K — прообраз в G неабелевой подгруппы порядка 10 из G/R. Так как K/R неприводима, то K — тоже неприводима с абелевыми силовыми подгруппами. Следовательно, $K' \cap Z(K) = 1$ и K' дополняем в K (см. [5], § 14 гл. VI). Так как, очевидно, $P \cap K = 1$ и PK' — силовая 5-подгруппа из G, то по теореме Гашотта $G = P \times G_1$, где $G_1 \cong PSL(2, 5)$ или $SL(2, 5)$. Пришли к противоречию.

Пусть P — абелева группа. Тогда, рассматривая фактор-группу G/P', в силу выбора группы G получаем $|P/P'| = 5$. Противоречие.

Лемма 5. Пусть G — неразрешимая группа с дополняемыми метаакциклическими подгруппами. Если $G/R(G) \cong PSL(2, 11)$, то G относится к одному из следующих двух типов групп:

1) $G = A \times B$, где $A \cong PSL(2, 11)$, B — метаакциклическая вполне факторизуемая, причем $3^2 \nmid |B|$, $5^2 \nmid |B|$;
2) $G = A \times B \times C$, где $A \cong SL(2, 11)$, B — метаакциклическая вполне факторизуемая $2'$-группа, $|C| = 1$ или 5, причем $11^2 \nmid |B|$, $3^2 \nmid |B|$.

Доказательство аналогично доказательству леммы 4.

Лемма 6. Пусть G — неразрешимая группа с дополняемыми метаакциклическими подгруппами. Если $G/R(G) \cong PGL(2, 11)$, то $G = A \times B$, где $A \cong PGL(2, 11)$, B — метаакциклическая вполне факторизуемая $2'$-группа, причем $3^2 \nmid |B|$, $5^2 \nmid |B|$, $11^2 \nmid |B|$.

Доказательство. Пусть G — контрпример минимального порядка к лемме. Пусть, далее, K — нормальная в $G = G/R(G)$ подгруппа, изоморфная $PSL(2, 11)$. Тогда ее прообраз K в G ввиду лемм 3 и 5 имеет разложение $K = L \times B$, где $L \cong PSL(2, 11)$ и $B = 2'$-группа. Так как группа K метаакциклична, то $G = (L \times B) \times a$, где $a^2 = 1$. Нетрудно убедиться, что подгруппы L и B можно считать нормальными в G.

Покажем, что $[B, a] = 1$. В самом деле, $L(a)$ содержит подгруппу порядка 110 с циклической подгруппой F порядка 10. Так как нормализатор $N_L(T)$ подгруппы T порядка 5 из F в L неабелевых подгрупп 10, то силовая 2-подгруппа из $N = N_{(G_n)}(T)$ нециклическая подгруппа 4. При этом $N \cong LB$. Если $[B, N] = 1$, то подгруппа BN метаакциклична и потому дополняема в G. Так как $|BN \cap L| = 10$, то дополнение Q имеет порядок 66, причем $Q \cap B = 1$. Но $G/B \cong PGL(2, 11)$ не содержит подгрупп порядка 110.
ка 11-3. Из полученного противоречия следует, что $[B, N] = 1$, и потому B является прямым множителем группы G. Тогда если $G = A \times B$, то $A \simeq PGL (2, 11)$, а B — вполне факторизуема метациклическая $2'$-группа. Так как подгруппы порядков 3, 11 и 5 из A недополняемы в A, то 3^2, 11^2 и 5^2 не делают порядок B. Лемма доказана.

Нетрудно убедиться в справедливости следующих трех утверждений.

Лемма 7. Пусть $G = A \times B$, где B — вполне факторизуема группа. Если H — такая подгруппа из G, что произведение BH дополняемо в G, то она дополняема в G.

Лемма 8. Пусть G — неметациклическая группа с метациклической силовой p-подгруппой. Если $G = H \times <a>$, где $|a| = p^2$, то H — неметациклическая группа.

Лемма 9. Пусть $G = H \times <a>$, где $|a| = p$, и в группе H дополняемы все неметациклические подгруппы. Если силовая p-подгруппа группы H циклическая, то в группе G дополняемы все неметациклические подгруппы.

Доказательство теоремы. Необходимость следует из лемм 2, 4—6.

Достаточность. Прежде всего заметим, что в группе типа 2 можно считать ввиду леммы 9, что $|C| = 1$.

Пусть G — группа одного из типов 1—3 доказываемой теоремы, H — ее неметациклическая подгруппа. Ввиду леммы 7 доказательство дополнительности H в группе G сводится к доказательству дополняемости в G подгруппы HB. Так как $T = HB = B \times A_1$, где $A_1 \leq A$, то последние очевидно, если A_1 дополняема в A, в частности, если она неметациклическа.

Предположим, что A_1 — метациклическая подгруппа из A и рассмотрим подгруппу $T = A_1 \times B$ из G. Покажем, что T либо метациклическая, либо дополняема в G. Пусть $K \leq A_1$, $L \leq B$ и группы $K, L, A_1/K$ и B/L — циклические. Тогда $T/KL = A_1L/KL \cdot BK/KL$, причем $A_1L/KL \simeq A_1/K (A_1 \cap L)$. Рассмотрим возможные случаи:

1. $A \simeq PSL (2, 5)$ или $SL (2, 5)$. Так как $B = 2'$-группа, то можно считать, что $|L|, 30 = 1$. Но тогда KL — циклическая группа. Далее, A_1/K — двойная, а B/L — циклическая. Значит, T/KL — циклическая, а T — метациклическая группа.

2. $A \simeq PSL (2, 11)$. Если $|A_1| = 11$, то $A_1 \leq N_A (A_1)$, порядок которого 11-5. Если $|A_1| = 11$, то подгруппа $Q \approx PSL (2, 5)$, а если $|A_1| = 11$, то подгруппа $Q_1 \simeq A_1$ из A дополняет A_1 в A (а значит, H в G).

Пусть $11 \nmid |A_1|$. Аналогично случаю 1 убеждаемся, что T — метациклическая группа.

3. $A \simeq SL (2, 11)$. Тогда можно считать, что $|L|, 330 = 1$ и потому KL — циклическая группа. Если $|A_1|, 10$, то $A_1/K, 10$. Так как $B = (2, 5)'$-группа, то T — метациклическая группа. Если $11 \nmid |A_1|$, то рассмотрим аналогичные случаи 1.

4. $A \simeq PGL (2, 11)$. Если $11 \nmid |A_1|$, то $A_1 \leq N = N_A (A_1)$, порядок которого 110. Если $A_1 = N$, то поскольку $N \not\subset R \subset A$, $R \simeq PSL (2, 11)$, то подгруппа, изоморфная A_1 из R, дополняет A_1 в A. Если же $|A_1| = 11$, то подгруппа дополняется в A нормализатором в A силовой 2-подгруппой R_2 из R. Отметим наконец, что если $|A_1| = 11$, то ввиду леммы 7 T — метациклическая группа.

Пусть $11 \nmid |A_1|$. Аналогично случаю 1 убеждаемся, что T — метациклическая группа. Теорема доказана.

Закон асимптотических выражений в теории функциональных уравнений в Кₜ-пространствах

Пусть \(X - K_{\alpha} \)-пространство с классом положительных элементов \(X_{+} \) (пользуемся терминологией и определениями из [1]). Для любого \(x \in X_{+} \) обозначим через \(X_{x} \) подпространство тех \(y \in X \), для которых \(|y| \leq \alpha x \) при некоторой постоянной \(\alpha > 0 \), зависящей от \(y \). Пусть \(A \) — положительный (\(o \))-линейный оператор в \(X \). Предположим, что для некоторых элементов
\[z = Ax = w. \]
(1)

Тогда согласно результатам Л. В. Канторовича (см. [1], гл. XII), для любого \(v \in X_{w} \) в \(X_{x} \) существует единственное решение уравнения

\[x = Ax = v. \]
(2)

Это решение может быть получено по методу последовательных приближений (относительно (\(o \))-сходимости в \(X \)) при начальном элементе \(x_{0} = 0 \):

\[x = \sum_{k=0}^{\infty} A^{k} v. \]
(3)

Всюду далее: такие решения будем называть главными. При этом если \(|v| \leq \alpha w \), то \(|x| \leq \alpha z \), если \(v \in X_{+} \), то \(x \in X_{+} \).

1. Пусть \(X_{k} \subseteq X_{k+1} \), \(k = 1, 2, \ldots \), — некоторая последовательность главных компонент пространства \(X \). Обозначим через \(P_{k} \) оператор проектирования \(X \) на \(X_{k} \), а через \(Q_{k} \) — оператор проектирования \(X \) на дизъюнкт-