R. Mirzaie (I. Kh. Int. Univ. (IKIU) Qazvin, Iran)

ON FUNDAMENTAL GROUP OF RIEMANNIAN MANIFOLDS WITH OMITTED FRACTAL SUBSETS

ПРО ФУНДАМЕНТАЛЬНУ ГРУПУ РІМАНОВИХ МНОГОВИДІВ З ПРОПУЩЕНИМИ ФРАКТАЛЬНИМИ ПІДМНОЖИНАМИ

We show that if K is a closed and bounded subset of a Riemannian manifold M of dimension m > 3, and the fractal dimension of K is less than m - 3, then the fundamental groups of M and M - K are isomorphic.

Показано, що якщо K — замкнена й обмежена підмножина ріманового многовиду M розмірності m>3, а фрактальна розмірність K менша за m-3, то фундаментальні групи M і M-K є ізоморфними.

1. Introduction. If K is a subset of a connected topological space M, it is interesting (but usually hard) to study, relations between fundamental groups of M and M-K. When the difference of the fractal dimensions (box dimension or Hausdorff dimension) of K and M is big enough, we expect that the fundamental groups of M and M-K be isomorphic. It is proved in [1] that if $M=R^m$ or $M=S^m$, $m\geq 2$ and F is a compact subset of M and the Hausdorff dimension of F is strictly less than m-k-1, then M-F is k-connected (i.e., its homotopy groups π_i vanish for $i\leq k$). Consequently if $\dim_H(F)< m-2$ then R^n-F and S^n-F are simply connected. In this paper, we consider a more general case when M is a Riemannian manifold then we prove the following theorem.

Theorem 1.1. Let M^m be a Riemannian manifold of dimension m > 3, and K be a bounded and closed subset of M such that $\overline{\dim}_B(K) < m - 3$. Then $\pi_1(M)$ is isomorphic to $\pi_1(M - K)$.

Before giving the proof of the theorem, we mention some preliminaries. Let A be a subset of a metric space (M,d). We denote by $\dim A$ the topological dimension of A. Let ϵ be a positive number and put

$$B_{\epsilon}(A) = \{x \in M : d(x, a) < \epsilon \text{ for some } a \in A\}.$$

If A is bounded then the upper box dimension of A is defined by

$$\overline{\dim}_B A = \limsup_{\delta \to 0} \frac{\log(m_\delta A)}{-\log \delta},$$

where, $m_{\delta}A$ is the maximum number of disjoint balls of radius δ , with centers contained in A. The lower box dimension $\underline{\dim}_B(A)$ is defined in similar way. Another definition for dimension, which is widely used in fractal geometry is Hausdorff dimension (see [2]). We use the upper box dimension in our theorem. But a similar result is true for lower box dimension and also for Hausdorff dimension.

Remark 1.1. (a) If A is a submanifold of a Riemannian manifold M, then

$$\overline{\dim}_B(A) = \dim(A).$$

(b) If (M,d) and (N,d') are metric spaces and $f\colon M\to N$ is a map such that for some positive number c>0, $d'(f(x),f(y))\leq cd(x,y)$ (f is Lipschitz), then

$$\overline{\dim}_B(f(A)) \le \overline{\dim}_B(A).$$

(c) If A_1 and A_2 are bounded subsets of M, then

$$\overline{\dim}_B(A_1 \times A_2) \le \overline{\dim}_B(A_1) + \overline{\dim}_B(A_2).$$

Remark 1.2. In the followings, for each positive number r, we denote by $S^{n-1}(r)$ the sphere of radius r and center at the origin of R^n . Let D be a closed (n-1)-disc in R^n and let a be a point outside of D. The set $C = \{ta + (1-t)d \colon d \in D, \ 0 \le t \le 1\}$ is called a cone with vertex a, over D. The following map is called a radial projection

$$f \colon C \to D \colon f(ta + (1-t)d) = d.$$

If $x_1, x_2 \in C$ and $x_1 \to a$, $x_2 \to a$ then $|x_2 - x_1| \to 0$. Thus f is not Lipschitz (because $|f(x_1) - f(x_2)|$ is bounded). But, if W is an open neighborhood of a in R^n , the map $f: (C - W) \to D$ is a Lipschitz map.

2. Proof of Theorem 1.1.

Step 1. Let $0 < r_2 < r_1$, $A(r_1, r_2) = \{x \in R^n : r_2 \le |x| \le r_1\}$, n > 2, and let K be a closed subset of $A(r_1, r_2)$, such that $\overline{\dim}_B(K) < n - 1$. Then there are points $a_1 \in S^{n-1}(r_1)$ and $a_2 \in S^{n-1}(r_2)$ such that the line segment a_2a_1 , joining two points a_1 and a_2 , does not intersect K.

Proof. Since $\overline{\dim}_B(K) < n-1$, then $S^{n-1}(r_1) - K \neq \emptyset$. Let $a_1 \in S^{n-1}(r_1) - K$ and let o be the origin of R^n . Denote by oa_1 the line segment joining o to a_1 . Put $b = oa_1 \cap S^{n-1}(r_2)$ and let c be the mid point of ob and consider the (n-1)-disc D, with the center at c and boundary on $S^{n-1}(r_2)$, which is perpendicular to ob at the point c. Since K is closed, there is an open neighborhood W of a_1 , such that $K \cap W = \emptyset$. Let C be the cone over D with the vertex a_1 , and consider the radial projection map $f: (C-W) \to D$. f is a Lipschitz map. Thus

$$\overline{\dim}_B(f(K \cap (C - W))) \le \overline{\dim}_B(K \cap (C - W)) < n - 1.$$

Thus, $f(K \cap (C-W))$ does not cover D. If $d \in (D-f((C-W) \cap K))$ then the line segment a_1d does not intersect K. If $a_2 = a_1d \cap S^{n-1}(r_2)$, then a_1a_2 is the desired line segment.

Step 2. If $K \subset \mathbb{R}^n$, n > 2, and $\overline{\dim}_B(K) < n - 1$, then there is a path $\sigma : [0,1] \to \mathbb{R}^n$ such that $\sigma(0) = o$ and for each $t \in (0,1]$, $\sigma(t) \notin K$.

Proof. Consider the spheres $S^{n-1}\left(\frac{1}{m}\right)$, $m\in N$. Since $\overline{\dim}_B(K)< n-1$, then for each r>0, $S^{n-1}(r)-K\neq\varnothing$. Let $a_1\in (S^{n-1}(1)-K)$. By Step 1, there is point $a_2\in S^{n-1}\left(\frac{1}{2}\right)$, such that $a_1a_2\cap K=\varnothing$. Let $\sigma_1\colon \left[\frac{1}{2},1\right]\to R^n$ be a path from a_2 to a_1 along the line segment a_2a_1 . Now, by induction, we can find the points $a_m\in S^{n-1}\left(\frac{1}{m}\right)$, m>1, and the paths $\sigma_{m-1}\colon \left[\frac{1}{m},\frac{1}{m-1}\right]\to R^n$, along the line segments a_ma_{m-1} , such that $a_{m-1}a_m\cap K=\varnothing$. The following path is the desired path

$$\sigma\colon [0,1]\to R^n, \quad \sigma(0)=0, \quad \text{and} \quad \sigma(t)=\sigma_m(t) \quad \text{if} \quad t\in \left[\frac{1}{m},\frac{1}{m-1}\right], \quad m>1.$$

Let $\alpha, \beta \colon I = [0,1] \to M$ be two continuous paths in M with the same end-points. We recall that a continuous map $F \colon [0,1] \times [0,1] \to M$ with the following properties,

856 R. MIRZAIE

is called a homotopy equivalence between α and β

$$F(s,0) = \alpha(s), \qquad F(s,1) = \beta(s), \quad s \in I,$$

$$F(0,t) = \alpha(0) = \beta(0), \qquad F(1,t) = \alpha(1) = \beta(1), \quad t \in I.$$

Step 3. Let E be a closed and bounded subset of R^n , n > 3, such that $\overline{\dim}_B(E) < n-3$. Let $\alpha, \beta \colon I \to (R^n-E)$ be two loops at the point $x_0 \in (R^n-E)$ and $F \colon I \times I \to R^n$ be a differentiable homotopy equivalence between α and β (in R^n). If $\epsilon > 0$ then there is a homotopy equivalence $G \colon I \times I \to (R^n-E)$ (homotopy equivalence in (R^n-E)) between α and β such that

$$\max \{|F(s,t) - G(s,t)| \colon (s,t) \in I \times I\} < \epsilon.$$

Proof. Put $N = F(I \times I)$ and let

$$\phi \colon N \times \mathbb{R}^n \to \mathbb{R}^n, \quad \phi(x,y) = y - x.$$

Consider the following metric on $N \times \mathbb{R}^n$:

$$d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|.$$

Put $K = \phi(N \times E)$. ϕ is a Lipschitz map, so

$$\overline{\dim}_B(K) = \overline{\dim}_B \phi(N \times E) \le \overline{\dim}_B(N \times E) \le$$

$$\leq \overline{\dim}_B(N) + \overline{\dim}_B(E) < 2 + n - 3 = n - 1.$$

By Step 2, there is a path $\sigma \colon [0,1] \to R^n$, such that $\sigma(0) = o$ and for each $t \in (0,1]$, $\sigma(t) \in (R^n - K)$. Let $\theta \colon I \times I \to [0,1]$ be a continuous function such that

$$\theta(s,t) = 0$$
 if and only if (s,t) belongs to the boundary of $I \times I$.

Since σ is continuous, there is a $\delta > 0$ such that

$$|\sigma(\delta\theta(s,t))| < \epsilon, \quad (s,t) \in I \times I.$$

Now, put

$$G: I \times I \to \mathbb{R}^n, \qquad G(s,t) = F(s,t) + \sigma(\delta\theta(s,t)).$$

We have

$$G(s,0) = F(s,0) = \alpha(s), \qquad G(s,1) = F(s,1) = \beta(s), \quad s \in I,$$

in similar way

$$G(0,t) = G(1,t) = x_0, \quad t \in I.$$

Thus, G is a homotopy equivalence between α and β . Also we obtain

$$G(s,t) \notin E$$
, $(s,t) \in I \times I$.

Because, if $G(s,t) \in E$ then

$$(F(s,t),F(s,t)+\sigma(\delta\theta(s,t))\in N\times E\Rightarrow (F(s,t)+\sigma(\delta(\theta(s,t)))-F(s,t))\in K.$$

Therefore, $\sigma(\delta\theta(s,t)) \in K$, which is contradiction. This means that $G \colon I \times I \to (R^n - E)$ is a homotopy equivalence between α and β in $(R^n - E)$. Also we have

$$|G(s,t) - F(s,t)| = |\sigma(\delta\theta(s,t))| < \epsilon.$$

Step 4. Let U be an open subset of R^n , n > 3, $E \subset U$ and $\overline{\dim}_B(E) < n - 3$. Then $\pi_1(U)$ is isomorphic to $\pi_1(U - E)$.

Proof. Let $x_0 \in (U-E)$ and for each loop $\alpha \colon I \to (U-E)$ at x_0 , denote by $[\alpha]_1$ and $[\alpha]_2$ the elements of $\pi_1(U-E,x_0)$ and $\pi_1(U,x_0)$ generated by α . Put

$$\phi \colon \pi_1(U - E) \to \pi_1(U), \qquad \phi([\alpha]_1) = [\alpha]_2.$$

We show that ϕ is one to one and onto. Let $[\alpha]_1, [\beta]_1 \in \pi_1(U-E)$. If $[\alpha]_2 = [\beta]_2$ then there is a differentiable homotopy equivalence $F \colon I \times I \to U$ between α and β in U. By Step 3, for each $\epsilon > 0$, there is a homotopy equivalence $G \colon I \times I \to (R^n - E)$ between α and β such that

$$|G(s,t) - F(s,t)| < \epsilon, \quad (s,t) \in I \times I.$$

Since for each (s,t), $F(s,t) \in U$, we can choose ϵ sufficiently small, such that $G(s,t) \in U$ (i.e., $G(s,t) \in U - E$). Thus G will be a homotopy equivalence between α and β in U - E. Then $[\alpha]_1 = [\beta]_1$ and consequently ϕ is one to one.

Now, we show that ϕ is onto. let $[\gamma] \in \pi_1(U, x_0)$ and suppose that γ is a differentiable representative of $[\gamma]$ and let $L = \{\gamma(t) \colon t \in [0, 1]\}$. Consider the following metric on $L \times R^n$:

$$d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|.$$

Put $\phi \colon L \times R^n \to R^n, \, \phi(x,y) = y-x$ and let $K = \phi(L \times E). \, \phi$ is Lipschitz, so

$$\overline{\dim}_B K \le \overline{\dim}_B (L \times E) \le \overline{\dim}_B L + \overline{\dim}_B E < 1 + n - 3 = n - 2.$$

Thus, as like as the proof of Step 2, we can find a path $\sigma \colon [0,1] \to \mathbb{R}^n$ such that $\sigma(0) = o$ and

$$\sigma(t) \notin K, \quad t \in (0,1].$$

Let $\theta \colon [0,1] \to [0,1]$ be a continuous function such that

$$\theta(s) = 0$$
 if and only if $s \in \{0, 1\}$.

For each $\epsilon > 0$, there is a $\delta > 0$ such that

$$|\sigma(\delta\theta(s))| < \epsilon, \quad s \in [0, 1].$$

Put

$$\alpha \colon [0,1] \to \mathbb{R}^n, \qquad \alpha(s) = \gamma(s) + \sigma(\delta\theta(s))$$

and let

$$H(s,t) = \gamma(s) + \sigma(\delta t \theta(s)).$$

Sine for each $s \in [0,1], \gamma(s) \in U$, we can choose the number ϵ , so small that

$$\alpha(s) \in U, \quad H(s,t) \in U.$$

Also we have $\alpha(s) \notin E$ (because, if $\alpha(s) \in E$ then $(\gamma(s), \alpha(s)) \in L \times E$, so $\alpha(s) - \gamma(s) \in K$, then $\sigma(\delta\theta(s)) \in K$, which is contradiction). Since $H: I \times I \to U$, is a homotopy equivalence between γ and α in U, we get that

$$\phi[\alpha]_1 = [\alpha]_2 = [\gamma].$$

Thus ϕ is onto.

858 R. MIRZAIE

Step 5. By Nash's embedding theorem, M^m can be embedded in R^n for sufficiently large n. Consider the normal vector bundle $M \to TM^{\perp} \colon p \to (T_pM)^{\perp}$ over the submanifold M of R^n (i.e., $TM^{\perp} = \{(p,v)\colon p \in M, v \in T_pM^{\perp}\}$). There exists a neighborhood U_0 of the null section O_M in $(TM)^{\perp}$ such that the map \exp (see [3] for definition of \exp) is a diffeomorphism of U_0 on to an open subset $U \subset R^n$ (U is called a tubular neighborhood of M in R^n)

$$\exp: U_0 \to U, \qquad \exp(p, v) = \exp_p(v).$$

The following map Ψ is a deformation retract of U_0 on to O_M :

$$\Psi \colon U_0 \times I \to U_0$$
,

$$\Psi((p, v), t) = (p, (1 - t)v).$$

Thus, the following map is a deformation retract of U on to M (i.e., $\pi_1(M)$ is isomorphic to $\pi_1(U)$).

$$\Phi \colon U \times I \to U, \qquad \Phi(x,t) = \exp(\Psi(\exp^{-1}(x),t)).$$

Consider the map $\varsigma\colon U\to M$ defined by $\varsigma(x)=\Phi(x,1)$ and put $\hat K=\varsigma^{-1}(K)$. It easy to show that

$$\dim_B(\hat{K}) \le \dim_B(K) + (n-m) < (m-3) + (n-m) < n-3.$$

Now, we can use Step 4, to get that $\pi_1(U)$ is isomorphic to $\pi_1(U - \hat{K})$. Since M is a deformation retract of U, it is easy to show that M - K is a deformation retract of $U - \hat{K}$. Thus $\pi_1(U - \hat{K})$ is isomorphic to $\pi_1(M - K)$. Therefore, $\pi_1(M - K)$ is isomorphic to $\pi_1(M)$.

- Matheus C., Olivera K. K. Geometrical versus topological properties of manifols // J. Inst. Math. Jusseiu. - 2005. - 4, № 4. - P. 639 - 651.
- 2. Falconer K. Fractal geometry: mathematical foundations. New York: Jon Wiley and Sons, 1990.
- 3. Do Carmo M. P. Riemannian geometry. Boston; Berlin, 1992.

Received 13.11.10