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STRONGLY RADICAL SUPPLEMENTED MODULES
CUJIbBHO PAIUKAJIBHO JOIMOBHEHI MOAVJII

Zo6schinger studied modules whose radicals have supplements and called these modules radical supplemented.
Motivated by this, we call a module strongly radical supplemented (briefly srs) if every submodule containing
the radical has a supplement. We prove that every (finitely generated) left module is an srs-module if and
only if the ring is left (semi)perfect. Over a local Dedekind domain, srs-modules and radical supplemented
modules coincide. Over a no-local Dedekind domain, an srs-module is the sum of its torsion submodule and
the radical submodule.

3owriHrep BUBYAB MOJYJI, PAIMKAJIN SIKHX MAIOTh JOTMIOBHEHHS, 1 HAa3BaB Ll MOAYI PAOUKAIbHO-00NOGHEHUMU.
MoTuByr04HCH UM, OyZIEMO Ha3UBATH MOYIIb CUIbHO PAOUKATbHO 00n06HeHUM (a0, CKOPOUEHO, ST°S-MOIYIEM)
SIKIO KOJKEH ITiIMO/YJIb, [0 MICTHTH PaJjHKal, Ma€ JOMOBHEHHs. JOBEICHO, MO KOXKEH (CKiHUCHHOIOPOUKe-
HUIT) JIIBHIA MOIYJIb € ST'S-MOJYJIEM TOJI 1 TTBKH TOJI, KOJIK KiJIbIIe € JTiBUM (HamiB)gockoHamuM. Ha okaib-
HOIO JICACKIHOBOIO 00JIACTIO ST'S-MOIYJI Ta paauKaIbHO TOMOBHEHI MOAy:i 30iraioTecs. Hax HenokaabHOIO
JIEICKIHI0BOIO 00NACTIO ST"S-MOJYINb € CyMOIO CBOTO MiJAMOAYIIS CKPYTY 1 PAAMKAIBHOTO MiIMOJYIIS.

1. Introduction. Throughout, R is an associative ring with identity and all modules
are unital left R-modules. Let M be an R-module. By N C M, we mean that N is a
submodule of M. A submodule L C M is said to be essential in M, denoted as L < M,
if LN N # 0 for every nonzero submodule N C M. A submodule S of M is called
small (in M), denoted as S <« M, if M # S + L for every proper submodule L of
M. By Rad M we denote the sum of all small submodules of M or, equivalently the
intersection of all maximal submodules of M. A module M is called supplemented (see
[1]), if every submodule NV of M has a supplement, i.e., a submodule K minimal with
respect to N + K = M. K is a supplement of N in M if and only if N + K = M and
NNK < K (see [1]). An R-module M is said to be radical supplemented if Rad M
has a supplement in M. Radical supplemented modules are studied by Zdschinger in [2]
and [3]. Motivated by this definition, we call a module strongly radical supplemented
if every submodule containing the radical has a supplement. srs-modules lies between
radical supplemented modules and supplemented modules. Some examples are provided
to show that these inclusions are proper.

In this paper, among other results, we prove that srs-modules are closed under factor
modules and finite sums. Every left R-module is an srs-module if and only if R is
left perfect. For modules with small radical the notions of supplemented and being srs-
module coincide. This gives us, every finitely generated R-module is an srs-module
if and only if R is semiperfect. Over a commutative non-local domain, we prove that
every reduced srs-module M is of the form M = T' (M) + Rad M, where T'(M) is the
torsion submodule of M. A commutative domain is h-local if and only if every finitely
generated torsion module is an srs-module. Over a local Dedekind domain (i.e., over
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a DVR), a module is an srs-module if and only if it is radical supplemented. Over a
non-local Dedekind domain an srs-module M is of the from M = T(M) + Rad M.

2. Strongly radical supplemented modules. Firstly we show some properties of
srs-modules.

Proposition 2.1. Every homomorphic image of an srs-module is an srs-module.

Proof. Let L C N C M and Rad(M/L) C N/L. Since (RadM + L)/L C
C Rad(M/L), we have Rad M C N. By assumption N has a supplement, say K, in
M. Then by [1] (41.1(7)), (K + L)/L is a supplement of N/L in M /L. Hence M /L is
an srs-module.

Proposition 2.2. If' M is an srs-module, then M/ Rad M is semisimple.

Proof. By Proposition 2.1, M/Rad M is an srs-module. Rad(M/Rad M) = 0,
therefore M/ Rad M is supplemented. By [1] (41.2(3)), M/ Rad M is semisimple.

To prove that the finite sum of srs-modules is an srs-module, we use the following
standard lemma (see [1] (41.2)).

Lemma 2.1. Let M be an R-module and My, N be submodules of M with
Rad M C N. If My is an srs-module and My + N has a supplement in M, then N has
a supplement in M.

Proof. Let L be a supplement of M7 + N in M. Since Rad M; C Rad M C N,
we have Rad My C (L + N) N Mj. Then (L + N) N M; has a supplement, say K, in
M, because M is an srs-module. So

M=M+N+L=K+[(L+N)NM]|+N+L=(K+N)+L.

Since N + K C N + My, L is also a supplement of N + K in M. Then by [4]
(Lemma 1.3a), K + L is a supplement of N in M.

Proposition 2.3. Let M = My + My, where M, and My are srs-modules, then
M is an srs-module.

Proof. Suppose that N C M with Rad M C N. Clearly M; + My + N has the
trivial supplement O in M, so by Lemma 2.1, M; + N has a supplement in M. Applying
the Lemma once more, we obtain a supplement for N in M.

Corollary 2.1. Every finite sum of srs-modules is an srs-module.

Lemma 2.2. Let M be a module with Rad M = M. Then M is an srs-module.

Proof. Clearly M has the trivial supplement 0 in M. Since M = Rad M is the
unique submodule containing the radical, M is an srs-module.

Let M be an R-module. By P(M) we denote the sum of all submodules V' of M
such that RadV = V.

Corollary 2.2. Let M be an R-module. Then P(M) is an srs-module.

Proof. For any module M, Rad P(M) = P(M). Then by Lemma 2.2, P(M) is an
srs-module.

The following example shows that srs-modules need not be supplemented.

Example 2.1. Consider the Z-module M =z Q. Then M is an srs-module, because
Rad Q = Q. On the other hand, M is not supplemented by [4] (Theorem 3.1).

Proposition 2.4. Let M be an R-module with Rad M < M. Then M is supplemen-
ted if and only if M is an srs-module.

Proof. One direction is clear. Suppose that M is an srs-module. Let N be a
submodule of M. Then N+Rad M has a supplement, say L, in M. So N+Rad M +L =
=M and (N+RadM)NL <« L. Since Rad M <« M, we have N + L = M and also
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NNLC(N+RadM)NL <« L,ie, NNL < L. Hence N has a supplement L in
M. Thus M is supplemented.

In [6], a ring R is called left max if every non-zero R-module has a maximal sub-
module. It is well known that R is a left max ring if and only if Rad M < M for every
non-zero left R-module M. By using Proposition 2.4, we obtain the following corollary.

Corollary 2.3. Every srs-module over a left max ring is supplemented.

Proposition 2.5. Let M be an R-module. Suppose that Rad M is supplemented
and M is an srs-module. Then M is supplemented.

Proof. Let N be a submodule of M. By the hypothesis, Rad M+ N has a supplement
in M. Since Rad M is supplemented, IV has a supplement in M by [1] (41.2). Hence
M 1is supplemented.

A submodule U C M is said to be cofinite if M /U is finitely generated. In [5], M
is called cofinitely supplemented if every cofinite submodule of M has a supplement
in M. It is also shown that M is cofinitely supplemented if and only if every maximal
submodule of M has a supplement in M (see [5], Theorem 2.8). Since Rad M is contai-
ned in every maximal submodule of M, every srs-module is cofinitely supplemented.
But the converse need not be true in general, as it is shown in the following example.

Firstly, we need the following lemma.

Lemma 2.3. Let M be an R-module and U, V. C M. If V is a supplement of U
in M and RadV C U, then RadV < V.

Proof. Suppose that RadV + T =V for some T' C V. Then

M=U+V=U+RadV+T=U+T.

Since V is a supplement and 7" C V, we have T'= V. Hence Rad V <« V.

Example 2.2. Let Z be the ring of integers and p be a prime in Z. Consider
the Z-module, M = @n>1 Zyn, where Zyn = Z/p™Z. Then M is a torsion module
and it is cofinitely supplemented by [5] (Corollary 4.7). To see that M is not an srs-
module, consider the submodule pM of M. Since M/pM is a semisimple module,
Rad M C pM. We shall prove that pM has not a supplement in M. Suppose pM
has a supplement, say N in M. Then Rad N < N by Lemma 2.3. Now since every
element of M is annihilated by some power of p, the module M can be considered as
a module over the local ring Z,). Then N is a bounded module by [5] (Lemma 2.1).
Therefore p" N = 0 for some n > 1. On the other hand, since N is a supplement of
pM, we have M = pM + N, and so p"M = p"t*' M 4 p"N = p"*+1 M. So that p" M
is divisible module by [5] (Lemma 4.4). But M has no nonzero divisible submodule.
Hence p™ M = 0, a contradiction. Therefore pM has not a supplement in M, i.e., M is
not an srs-module.

Proposition 2.6. Let R be any ring and M be an R-module. Suppose that
M/ Rad M is finitely generated. Then M is cofinitely supplemented if and only if it
is an srs-module.

Proof. Let M be an R-module and N be a submodule of M with Rad M C N.
Note that

[M/Rad M]/[N/Rad M] = M/N

is finitely generated and thus N is a cofinite submodule of M. Since M is cofinitely
supplemented, N has a supplement in M. Therefore M is an srs-module. The converse
is clear.
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Now, we have the following implications on modules:
supplemented => srs-module = cofinitely supplemented.

Proposition 2.7. Let M be an R-module and RadM C U C M. If V is a
supplement of U in M, then RadV < V.

Proof. Since Rad M C U, we have RadV C U. Then Rad V' <« V by Lemma 2.3.

Recall from [6] that a submodule L of a module M is called a Rad-supplement of a
submodule N of M in M if N+ L = M and NNL C Rad L. Clearly every supplement
submodule is a Rad-supplement.

Corollary 2.4. Let M be an R-module and N C M such that Rad M C N.
Suppose that N + L = M for some L C M. Then L is a supplement of N in M if and
only if L is a Rad-supplement of N and Rad L < L.

In the following proposition, we characterize supplements of the radical of a module
over semilocal rings.

Proposition 2.8. Let R be a semilocal ring and M be an R-module. A submodule
N C M is a supplement of Rad M in M if and only if N is coatomic, M /N has no
maximal submodules and Rad N = N N Rad M.

Proof. (=) Let N be a supplement of Rad M in M. Thenby [1] (41.1(5)), Rad N =
= NNRad M. If N = M, then clearly Rad M < M. Since R is semilocal, M/ Rad M
is semisimple. Therefore every proper submodule of M is contained in a maximal sub-
module, i.e., M is coatomic. Suppose that /N is a proper submodule of M. If K is a
maximal submodule of M with N C K, then M = Rad M + N C K, a contradiction.
So that NV is not contained in any maximal submodule of M, i.e., M /N has no maximal
submodules. By Proposition 2.7, we have Rad N <« N. Since N/ Rad N is semisimple,
N is coatomic.

(<) Suppose that N + Rad M # M. Then (N + Rad M)/Rad M & M/Rad M.
Since R is semilocal, M/ Rad M is semisimple and so there exists a maximal submodule
K/Rad M of M/Rad M such that (N + RadM)/Rad M C K/RadM. So N +
+Rad M C K, this implies N C K. Therefore K/N is a maximal submodule of M /N,
a contradiction. So N + Rad M = M. By the hypothesis, N "Rad M = Rad N <« N.
Hence N is a supplement of Rad M in M.

Now, we shall characterize the rings over which all (finitely generated) modules are
srs-modules.

Corollary 2.5. For aring R, the following statements are equivalent.

(1) R is semiperfect.

(2) rRis an srs-module.

(3) Every finitely generated left R-module is an srs-module.

Proof. For every finitely generated module M, we have Rad M < M. On the other
hand, by [1] (42.6), R is semiperfect if and only if every finitely generated R-module is
supplemented. From this fact and Proposition 2.4, the implications (1) < (2) < (3) are
clear.

Corollary 2.6. For a ring R, the following statements are equivalent.

(1) R is left perfect.

(2) The left R-module R™) is an srs-module.

(3) Every left R-module is an srs-module.
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Proof. (1) = (3) and (3) = (2) are clear.

(2) = (1) By Proposition 2.1, g R is an srs-module. So R is semilocal by Proposi-
tion 2.2. Since R™ is an srs-module, Rad R™ has a (weak) supplement in R,
Therefore R is left perfect by [7] (Theorem 1).

The following is a slight modification of [4] (Lemma 1.3 (Folgerung)).

Proposition 2.9. Let M be an R-module and K be a submodule of M. If K and
M/K are srs-modules and K has a supplement L in P for every submodule P with
K C P C M, then M is an srs-module.

Proof. Let N be a submodule of M with Rad M C N. It follows from [4] (Lem-
ma 1.1(d)) that we can write Rad(M/K) = (Rad M + K)/K C (N + K)/K. Since
M/K is an srs-module, (N + K)/K has a supplement in M /K. That is, there exists a
submodule V/K of M/K such that (N + K)/K +V/K = M/K and [N+ K)/K]N
N[V/K] < V/K. Since K C V, K has a supplement in V. Therefore V = K + L and
KNL <« L for some L C V. Now

M=N+V=N+4+(K+L)=(N+K)+L.

Suppose that M = (N + K)+ L’ forsome L' C L. Then M/K = (N+ K)/K + (L' +
+ K)/K.But V/K is a supplement of (N+ K)/K in M/K and (L' + K)/K CV/K.
By minimality of V/K, we obtain (L' + K)/K = V/K. It follows that V = L' + K.
Since L is a supplement of K in V, we have L' = L. So L is a supplement of N + K
in M. By Lemma 2.1, N has a supplement in M. Hence M is an srs-module.

The following corollary is a direct consequence of Proposition 2.9.

Corollary 2.1. Let M be an R-module which contains an artinian submodule K.
Then M is an srs-module if and only if M /K is an srs-module.

Proof. One direction follows from Proposition 2.1. Conversely, suppose that M /K
is an srs-module. By assumption, K is supplemented and so it is an srs-module. It
follows from [3] that K has a supplement in every P with K C P C M. Therefore M
is an srs-module by Proposition 2.9.

3. srs-Modules over Dedekind domains. Throughout this section, unless otherwise
stated, we shall consider commutative rings. The following result is due to Zdschinger.

Lemma 3.1 [3] (Satz 3.1). For a module over a discrete valuation ring (DVR), the
following statements are equivalent.

(1) M is radical supplemented,

2) M =T(M) ® X, where the reduced part of T(M) is bounded and X/ Rad X
is finitely generated,

Now we shall prove that radical supplemented modules and srs-modules coincide
over discrete valuation rings. Firstly we need the following lemma.

Lemma 3.2. Let R be a local ring and M be an R-module. If M/Rad M is
finitely generated, then M is an srs-module.

Proof. Let N be a submodule of M such that Rad M C N. Then M/N is finitely
generated, and so M = N + L for some finitely generated submodule L of M. Since
rR is supplemented, L is also supplemented as it is finitely generated. So N has a
supplement in M by Lemma 2.1.

Proposition 3.1. Let R be a DVR and M be an R-module. Then M is an srs-
module if and only if M is radical supplemented.
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Proof. One direction is clear. Suppose that M is radical supplemented. Then M =
=T(M)@® X as in Lemma 3.1. Since T (M) is bounded, it is supplemented by [4]
(Theorem 2.4). By Lemma 3.2, X is an srs-module. Therefore M is an srs-module by
Corollary 2.1.

Note that, by Example 2.2, Proposition 3.1 is not true in general for modules over
Dedekind domains which are not DVR.

Proposition 3.2. Let R be a non-local domain and M be a reduced R-module. If
M is an srs-module, then M = T(M) + Rad M.

Proof. Suppose that T (M) + Rad M # M. Since Rad M C T(M) + Rad M,
T (M) + Rad M has a supplement, say L, in M. Then L has a maximal submodule K,
because M is reduced. Let K/ = T(M) + Rad M + K. It is easy to see that K’ is a
maximal submodule of M. Then K’ has a supplement V in M. By [1] (41.1(3)), V is
local, and so V' = R/I for some nonzero I C R. Therefore V is torsion, and so V' C
CT(M). Weget M = K'+V =T(M)+Rad M+K+V =T(M)+Rad M+K = K’,
a contradiction. Hence M = T'(M) + Rad M.

Now we shall prove that, the converse of Proposition 3.2 is true, under a certain
condition.

Proposition 3.3. Let R be a domain and M be an R-module. Suppose that M =
T(M) + Rad M and T(M) is supplemented. Then M is an srs-module.

Proof. Let N be a submodule of M such that RadM C N. Then N = N N
NT(M)+Rad M =T(N)+ Rad M. Let L be a supplement of T'(N) in T'(M). Then
T(N)+ L =T(M) and T(N)NL < L. It follows that M = T(M) + Rad M =
=T(N)+L+RadM C N+ Landso M = N + L. Since L is torsion, NN L =
=T(N) N L. Therefore L is a supplement of N in M.

Let R be a Dedekind domain and M be an R-module. Since R is a dedekind domain,
P(M) is the divisible part of M. By [5] (Lemma 4.4), P(M) is (divisible) injective and
so there exists a submodule N of M such that M = P(M) @ N. Here N is called the
reduced part of M. Note that P(M) C Rad M. By Corollary 2.2, we know that P(M)
is an srs-module. Using these facts, we have the following result.

Proposition 3.4. Let R be a Dedekind domain and M be an R-module. Then M
is an srs-module if and only if the reduced part N of M is an srs-module.

Proof. N is an srs-module as a homomorphic image of M by Proposition 2.1. The
converse is by Proposition 2.3.

Proposition 3.5. Let R be a non-local Dedekind domain and M be an srs-module.
Then M =T(M) + Rad M.

Proof. Let M = P(M)@® N with N reduced. Then N is an srs-module as a direct
summand of M. By Proposition 3.2, N = T'(N) 4+ Rad N. So that

M=PM)®N=PM)+T(N)+RadN C T(M) + Rad M.

Hence M = T (M) + Rad M.

Recall from [5] that a commutative domain R is called A-local if every non-zero
non-unit of R belongs to only finitely many maximal ideals and R/P is a local ring for
every prime ideal P of R. It is also proved that a commutative domain R is h-local if and
only if R/I is a semiperfect ring for every non-zero ideal I of R (see [5], Lemma 4.5).
In [5], it is proved that, R is h-local if and only if every finitely generated torsion
R-module is supplemented. Since for finitely generated modules supplemented modules
and srs-modules coincide, we obtain the following .
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Proposition 3.6. Let R be a commutative domain. Then R is h-local if and only
if every finitely generated torsion R-module is an srs-module.
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