2018
Том 70
№ 2
All Issues
- Volume 70, 2018
- Volume 69, 2017
- Volume 68, 2016
- Volume 67, 2015
- Volume 66, 2014
- Volume 65, 2013
- Volume 64, 2012
- Volume 63, 2011
- Volume 62, 2010
- Volume 61, 2009
- Volume 60, 2008
- Volume 59, 2007
- Volume 58, 2006
- Volume 57, 2005
- Volume 56, 2004
- Volume 55, 2003
- Volume 54, 2002
- Volume 53, 2001
- Volume 51, 1999
- Volume 49, 1997
- Volume 46, 1994
- Volume 45, 1993
- Volume 44, 1992
- Volume 43, 1991
- Volume 42, 1990
- Volume 41, 1989
- Volume 40, 1988
- Volume 39, 1987
- Volume 38, 1986
- Volume 37, 1985
- Volume 36, 1984
- Volume 35, 1983
- Volume 34, 1982
- Volume 33, 1981
- Volume 32, 1980
- Volume 31, 1979
- Volume 30, 1978
- Volume 29, 1977
- Volume 28, 1976
- Volume 27, 1975
- Volume 26, 1974
- Volume 25, 1973
- Volume 24, 1972
- Volume 23, 1971
- Volume 22, 1970
- Volume 21, 1969
- Volume 20, 1968
- Volume 19, 1967
- Volume 18, 1966
- Volume 17, 1965
- Volume 16, 1964
- Volume 15, 1963
- Volume 14, 1962
- Volume 13, 1961
- Volume 12, 1960
Existence and uniqueness theorem to a model of bimolecular surface reactions
Ambrazevicius A.
Abstract
We prove the existence and uniqueness of classical solutions to a coupled system of parabolic and ordinary differential
equations in which the latter are determined on the boundary. This system describes the model of bimolecular surface
reaction between carbon monoxide and nitrous oxide occurring on supported rhodium in the case of slow desorption of the
products.
Citation Example: Ambrazevicius A. Existence and uniqueness theorem to a model of bimolecular surface reactions // Ukr. Mat. Zh. - 2017. - 69, № 7. - pp. 877-888.