2017
Том 69
№ 9

All Issues

Exact values of the best (α, β) -approximations of classes of convolutions with kernels that do not increase the number of sign changes

Parfinovych N. V.


Abstract

We obtain the exact values of the best $(\alpha , \beta )$-approximations of the classes $K \ast F$ of periodic functions $K \ast f$ such that $f$ belongs to a given rearrangement-invariant set $F$ and $K$ is $2\pi$ -periodic kernel that do not increase the number of sign changes by the subspaces of generalized polynomial splines with nodes at the points $2k\pi /n$ and $2k\pi /n + h, n \in N, k \in Z, h \in (0, 2\pi /n)$. It is shown that these subspaces are extremal for the Kolmogorov widths of the corresponding functional classes.

Citation Example: Parfinovych N. V. Exact values of the best (α, β) -approximations of classes of convolutions with kernels that do not increase the number of sign changes // Ukr. Mat. Zh. - 2017. - 69, № 8. - pp. 1073-1083.