2019
Том 71
№ 9

All Issues

Exact values of the best (α, β) -approximations of classes of convolutions with kernels that do not increase the number of sign changes

Parfinovych N. V.

Full text (.pdf)


Abstract

We obtain the exact values of the best $(\alpha , \beta )$-approximations of the classes $K \ast F$ of periodic functions $K \ast f$ such that $f$ belongs to a given rearrangement-invariant set $F$ and $K$ is $2\pi$ -periodic kernel that do not increase the number of sign changes by the subspaces of generalized polynomial splines with nodes at the points $2k\pi /n$ and $2k\pi /n + h, n \in N, k \in Z, h \in (0, 2\pi /n)$. It is shown that these subspaces are extremal for the Kolmogorov widths of the corresponding functional classes.

Citation Example: Parfinovych N. V. Exact values of the best (α, β) -approximations of classes of convolutions with kernels that do not increase the number of sign changes // Ukr. Mat. Zh. - 2017. - 69, № 8. - pp. 1073-1083.

Full text