2017
Том 69
№ 9

All Issues

Exact solutions of the nonliear equation $u_{tt} = = a(t) uu_{xx} + b(t) u_x^2 + c(t) u $

Barannik A. F., Barannik A. F., Yuryk I. I.


Abstract

Ans¨atzes that reduce the equation$u_{tt} = = a(t) uu_{xx} + b(t) u_x^2 + c(t) u $ to a system of two ordinary differential equations are defined. Also it is shown that the problem of constructing exact solutions of the form $u = \mu 1(t)x_2 + \mu 2(t)x\alpha , \alpha \in \bfR$, to this equation, reduces to integrating of a system of linear equations $\mu \prime \prime 1 = \Phi 1(t)\mu 1, \mu \prime \prime 2 = \Phi 2(t)\mu 2$, where $\Phi 1(t)$ and \Phi 2(t) are arbitrary predefined functions.

Citation Example: Barannik A. F., Barannik A. F., Yuryk I. I. Exact solutions of the nonliear equation $u_{tt} = = a(t) uu_{xx} + b(t) u_x^2 + c(t) u $ // Ukr. Mat. Zh. - 2017. - 69, № 9. - pp. 1180-1186.