2019
Том 71
№ 5

All Issues

On the rigidity of rank gradient in a group of intermediate growth

Grigorchuk R. I., Kravchenko R.


Abstract

We introduce and investigate a rigidity property of rank gradient for an example of a group $\scr G$ of intermediate growth constructed by the first author in [Grigorcuk R. I. On Burnside’s problem on periodic groups // Funktsional. Anal. i Prilozhen. – 1980. – 14, № 1. – P. 53 – 54]. It is shown that $\scr G$ is normally $(f, g)$-RG rigid, where$ f(n) = \mathrm{l}\mathrm{o}\mathrm{g}(n)$ and $g(n) = \mathrm{l}\mathrm{o}\mathrm{g}(\mathrm{l}\mathrm{o}\mathrm{g}(n))$.

Citation Example: Grigorchuk R. I., Kravchenko R. On the rigidity of rank gradient in a group of intermediate growth // Ukr. Mat. Zh. - 2018. - 70, № 2. - pp. 165-176.