2019
Том 71
№ 11

All Issues

Approximative characteristics of the Nikol’skii – Besov classes of functions $S_{1, θ}^r B(\mathbb{R}^d)$

Radchenko O. Ya., Yanchenko S. Ya.


Abstract

UDC 517.51
We establish the exact-order estimates for the approximation of the classes $S^{\boldsymbol{r}}_{1,\theta}B \left(\mathbb{R}^d\right)$ by entire functions of exponential type with supports of their Fourier transforms lying in a step hyperbolic cross. The error of approximation is estimated in the metric of the Lebesgue space $L_q\left(\mathbb{R}^d\right),\; 1 < q \leq \infty.$

Citation Example: Radchenko O. Ya., Yanchenko S. Ya. Approximative characteristics of the Nikol’skii – Besov classes of functions $S_{1, θ}^r B(\mathbb{R}^d)$ // Ukr. Mat. Zh. - 2019. - 71, № 10. - pp. 1405-1421.