2019
Том 71
№ 11

All Issues

Reducibility of nonlinear almost periodic systems of difference equations given on a torus

Martynyuk D. I., Perestyuk N. A., Samoilenko A. M.

Full text (.pdf)


Abstract

Sufficient conditions are established for the reducibility of a nonlinear system of difference equations $$x(x + 1) = x(1) + \omega + P(x(t), t) + \lambda,$$ where $P(x, t)$ is a function $2\pi$-periodic in $x_i(i = 1,..., n)$ and almost periodic in $t$ with a frequency basis $\alpha$, to the system $$y(t + 1) = y(t) + \omega.$$

English version (Springer): Ukrainian Mathematical Journal 46 (1994), no. 4, pp 425-432.

Citation Example: Martynyuk D. I., Perestyuk N. A., Samoilenko A. M. Reducibility of nonlinear almost periodic systems of difference equations given on a torus // Ukr. Mat. Zh. - 1994. - 46, № 4. - pp. 404–412.

Full text