2017
Том 69
№ 7

All Issues

On the Stability of the Maximum Term of the Entire Dirichlet Series

Skaskiv O. B., Trakalo O. M.

Full text (.pdf)


Abstract

We establish necessary and sufficient conditions for logarithms of the maximal terms of the entire Dirichlet series $F(z) = \sum^{+\infty}_{n=0}a_n e^{z\lambda_n}$ and $A(z) = \sum^{+\infty}_{n=0}a_n b_n e^{z\lambda_n}$ to be asymptotically equivalent as ${\rm Re}\;z \rightarrow +\infty$ outside some set of finite measure.

English version (Springer): Ukrainian Mathematical Journal 57 (2005), no. 4, pp 686-693.

Citation Example: Skaskiv O. B., Trakalo O. M. On the Stability of the Maximum Term of the Entire Dirichlet Series // Ukr. Mat. Zh. - 2005. - 57, № 4. - pp. 571–576.

Full text