2017
Том 69
№ 9

All Issues

The space $\Omega^p_m(R^d)$ and some properties

Gürkanli A. T., Sandikçi A.

Full text (.pdf)


Abstract

Let $m$ be a $v$-moderate function defined on $R^d$ and let $g \in L^2(R^d)$. In this work, we define $\Omega ^p_m(R^d)$ to be the vector space of $f \in L^2_n(R^d)$ such that the Gabor transform $V_gf$ belongs to $L^p(R^{2d})$, where $1 \leq p < \infty$. We endowe it with a norm and show that it is a Banach space with this norm. We also study some preliminary properties of $\Omega ^p_m(R^d)$. Later we discuss inclusion properties and obtain the dual space of $\Omega ^p_m(R^d)$. At the end of this work, we study multipliers from $L_w^1 (R^d)$ into $\Omega ^p_w(R^d)$ and from $\Omega ^p_w(R^d)$ into $L^{\infty}_{w^{-1}}(R^d)$, where $w$ is Beurling's weight function.

English version (Springer): Ukrainian Mathematical Journal 58 (2006), no. 1, pp 155-162.

Citation Example: Gürkanli A. T., Sandikçi A. The space $\Omega^p_m(R^d)$ and some properties // Ukr. Mat. Zh. - 2006. - 58, № 1. - pp. 139-145.

Full text