2017
Том 69
№ 5

All Issues

Generalized solutions of mixed problems for first-order partial functional differential equations

Czernous W.

Full text (.pdf)


Abstract

A theorem on the existence of solutions and their continuous dependence upon initial boundary conditions is proved. The method of bicharacteristics is used to transform the mixed problem into a system of integral functional equations of the Volterra type. The existence of solutions of this system is proved by the method of successive approximations using theorems on integral inequalities. Classical solutions of integral functional equations lead to generalized solutions of the original problem. Differential equations with deviated variables and differential integral problems can be obtained from the general model by specializing given operators.

English version (Springer): Ukrainian Mathematical Journal 58 (2006), no. 6, pp 904-936.

Citation Example: Czernous W. Generalized solutions of mixed problems for first-order partial functional differential equations // Ukr. Mat. Zh. - 2006. - 58, № 6. - pp. 804–828.

Full text