2017
Том 69
№ 9

All Issues

On the equivalence of some conditions for weighted Hardy spaces

Dilnyi V. M.

Full text (.pdf)


Abstract

Let $G ∈ H_{σ}^p (ℂ+)$, where $H_{σ}^p (ℂ+)$ is the class of functions analytic in the half plane ℂ+ = {z: Re z > 0} and such that $$\mathop {\sup }\limits_{\left| \varphi \right| < \tfrac{\pi }{2}} \left\{ {\int\limits_0^{ + \infty } {\left| {G(re^{i\varphi } )} \right|^p e^{ - p\sigma r\left| {sin\varphi } \right|} dr} } \right\} < + \infty .$$ In the case where a singular boundary function $G$ is identically constant and $G(z) ≠ 0$ for all $z ∈ ℂ_{+}$, we establish conditions equivalent to the condition $G(z)\exp \left\{ {\frac{{2\sigma }}{\pi }zlnz - cz} \right\} \notin H^p (\mathbb{C}_+ )$, where $H^p (ℂ_{+})$ is the Hardy space, in terms of the behavior of $G$ on the real semiaxis and on the imaginary axis.

English version (Springer): Ukrainian Mathematical Journal 58 (2006), no. 9, pp 1425-1432.

Citation Example: Dilnyi V. M. On the equivalence of some conditions for weighted Hardy spaces // Ukr. Mat. Zh. - 2006. - 58, № 9. - pp. 1257–1263.

Full text