2017
Том 69
№ 9

All Issues

Finite-dimensional subalgebras in polynomial Lie algebras of rank one

Arzhantsev I. V., Makedonskii E. A., Petravchuk A. P.

Full text (.pdf)


Abstract

Let $W_n(\mathbb{K})$ be the Lie algebra of derivations of the polynomial algebra $\mathbb{K}[X] := \mathbb{K}[x_1,... ,x_n]$ over an algebraically closed field $K$ of characteristic zero. A subalgebra $L \subseteq W_n(\mathbb{K})$ is called polynomial if it is a submodule of the $\mathbb{K}[X]$-module $W_n(\mathbb{K})$. We prove that the centralizer of every nonzero element in $L$ is abelian provided that $L$ is of rank one. This fact allows to classify finite-dimensional subalgebras in polynomial Lie algebras of rank one.

English version (Springer): Ukrainian Mathematical Journal 63 (2011), no. 5, pp 827-832.

Citation Example: Arzhantsev I. V., Makedonskii E. A., Petravchuk A. P. Finite-dimensional subalgebras in polynomial Lie algebras of rank one // Ukr. Mat. Zh. - 2011. - 63, № 5. - pp. 708-712.

Full text