2017
Том 69
№ 6

All Issues

A result on generalized derivations on right ideals of prime rings

Argaç N., Demir Ç.

Full text (.pdf)


Abstract

Let $R$ be a prime ring of characteristic not 2 and let $I$ be a nonzero right ideal of $R$. Let $U$ be the right Utumi quotient ring of $R$ and let $C$ be the center of $U$. If $G$ is a generalized derivation of $R$ such that $[[G(x), x], G(x)] = 0$ for all $x \in I$, then $R$ is commutative or there exist $a, b \in U$ such that $G(x) = ax + xb$ for all $x \in R$ and one of the following assertions is true: $$(1)\quad (a - \lambda)I = (0) = (b + \lambda)I \;\;\text{for some}\; \lambda \in C,$$ $$(2)\quad (a - \lambda)I = (0) \;\;\text{for some}\; \lambda \in C \;\;\text{and}\; b \in C.$$

English version (Springer): Ukrainian Mathematical Journal 64 (2012), no. 2, pp 186-197.

Citation Example: Argaç N., Demir Ç. A result on generalized derivations on right ideals of prime rings // Ukr. Mat. Zh. - 2012. - 64, № 2. - pp. 165-175.

Full text