2017
Том 69
№ 9

All Issues

Integral manifolds for semilinear evolution equations and admissibility of function spaces

Hà Phi, Nguyễn Thiếu Huy, Vụ Thì Ngọc Hà

Full text (.pdf)


Abstract

We prove the existence of integral (stable, unstable, center) manifolds for the solutions to the semilinear integral equation $u(t) = U(t,s)u(s) + \int^t_s U(t,\xi)f (\xi,u(\xi))d\xi$ in the case where the evolution family $(U(t, s))_{t leq s}$ has an exponential trichotomy on a half-line or on the whole line, and the nonlinear forcing term $f$ satisfies the $\varphi $-Lipschitz conditions, i.e., $||f (t, x) — f (t, y) \leq \varphi p(t)||x — y||$, where $\varphi (t)$ belongs to some classes of admissible function spaces. Our main method invokes the Lyapunov-Perron methods, rescaling procedures, and the techniques of using the admissibility of function spaces.

English version (Springer): Ukrainian Mathematical Journal 64 (2012), no. 6, pp 881-911.

Citation Example: Hà Phi, Nguyễn Thiếu Huy, Vụ Thì Ngọc Hà Integral manifolds for semilinear evolution equations and admissibility of function spaces // Ukr. Mat. Zh. - 2012. - 64, № 6. - pp. 772-796.

Full text