2017
Том 69
№ 6

All Issues

Strongly alternative Dunford - Pettis subspaces of operator ideals

Moshtaghioun S. M.

Full text (.pdf)


Abstract

Introducing the concept of strong alternative Dunford – Pettis property (strong DP1) for the subspace M of operator ideals $\mathcal{U}(X, Y )$ between Banach spaces $X$ and $Y$, we show that M is a strong DP1 subspace if and only if all evaluation operators $\phi_x : \mathcal{M} → Y$ та $ψy∗ : \mathcal{M} → X^{*}$ are DP1 operators, where $\phi_x(T) = T x$ та $ψ_{y^{∗}} (T) = T^{∗}y^{∗}$ for $x ∈ X, y^{∗} ∈ Y$ and $T ∈ M$. Some consequences related to the concept of alternative Dunford – Pettis property in subspaces of some operator ideals are obtained.

English version (Springer): Ukrainian Mathematical Journal 65 (2013), no. 4, pp 349-365.

Citation Example: Moshtaghioun S. M. Strongly alternative Dunford - Pettis subspaces of operator ideals // Ukr. Mat. Zh. - 2013. - 65, № 4. - pp. 588-593.

Full text