2017
Том 69
№ 9

All Issues

Quasi-Frobenius Rings and Nakayama Permutations of Semiperfect Rings

Dokuchaev M. A., Kirichenko V. V.

Full text (.pdf)


Abstract

We say that \({\mathcal{A}}\) is a ring with duality for simple modules, or simply a DSM-ring, if, for every simple right (left) \({\mathcal{A}}\) -module U, the dual module U* is a simple left (right) \({\mathcal{A}}\) -module. We prove that a semiperfect ring is a DSM-ring if and only if it admits a Nakayama permutation. We introduce the notion of a monomial ideal of a semiperfect ring and study the structure of hereditary semiperfect rings with monomial ideals. We consider perfect rings with monomial socles.

English version (Springer): Ukrainian Mathematical Journal 54 (2002), no. 7, pp 1112-1125.

Citation Example: Dokuchaev M. A., Kirichenko V. V. Quasi-Frobenius Rings and Nakayama Permutations of Semiperfect Rings // Ukr. Mat. Zh. - 2002. - 54, № 7. - pp. 919-930.

Full text