2017
Том 69
№ 9

All Issues

The Reduction Method in the Theory of Lie-Algebraically Integrable Oscillatory Hamiltonian Systems

Prikarpatskii A. K., Samoilenko V. G., Taneri U.

Full text (.pdf)


Abstract

We study the problem of the complete integrability of nonlinear oscillatory dynamical systems connected, in particular, both with the Cartan decomposition of a Lie algebra \(G = K \oplus P{\text{, where }}K\) is the Lie algebra of a fixed subgroup \(K \subset {\text{G}}\) with respect to an involution σ : GG on the Lie group G, and with a Poisson action of special type on a symplectic matrix manifold.

English version (Springer): Ukrainian Mathematical Journal 55 (2003), no. 2, pp 282-292.

Citation Example: Prikarpatskii A. K., Samoilenko V. G., Taneri U. The Reduction Method in the Theory of Lie-Algebraically Integrable Oscillatory Hamiltonian Systems // Ukr. Mat. Zh. - 2003. - 55, № 2. - pp. 232-240.

Full text