2017
Том 69
№ 9

All Issues

The Jacobi Field of a Lévy Process

Berezansky Yu. M., Lytvynov E. V., Mierzejewski D. A.

Full text (.pdf)


Abstract

We derive an explicit formula for the Jacobi field that is acting in an extended Fock space and corresponds to an ( \(\mathbb{R}\) -valued) Lévy process on a Riemannian manifold. The support of the measure of jumps in the Lévy–Khintchine representation for the Lévy process is supposed to have an infinite number of points. We characterize the gamma, Pascal, and Meixner processes as the only Lévy process whose Jacobi field leaves the set of finite continuous elements of the extended Fock space invariant.

English version (Springer): Ukrainian Mathematical Journal 55 (2003), no. 5, pp 853-858.

Citation Example: Berezansky Yu. M., Lytvynov E. V., Mierzejewski D. A. The Jacobi Field of a Lévy Process // Ukr. Mat. Zh. - 2003. - 55, № 5. - pp. 706-710.

Full text