2017
Том 69
№ 9

All Issues

Lebesgue–Cech Dimensionality and Baire Classification of Vector-Valued Separately Continuous Mappings

Kalancha A. K., Maslyuchenko V. K.

Full text (.pdf)


Abstract

For a metrizable space X with finite Lebesgue–Cech dimensionality, a topological space Y, and a topological vector space Z, we consider mappings f: X × YZ continuous in the first variable and belonging to the Baire class α in the second variable for all values of the first variable from a certain set everywhere dense in X. We prove that every mapping of this type belongs to the Baire class α + 1.

English version (Springer): Ukrainian Mathematical Journal 55 (2003), no. 11, pp 1894-1898.

Citation Example: Kalancha A. K., Maslyuchenko V. K. Lebesgue–Cech Dimensionality and Baire Classification of Vector-Valued Separately Continuous Mappings // Ukr. Mat. Zh. - 2003. - 55, № 11. - pp. 1576-1579.

Full text