2017
Том 69
№ 7

All Issues

Coconvex Approximation of Functions with More than One Inflection Point

Dzyubenko H. A., Zalizko V. D.

Full text (.pdf)


Abstract

Assume that fC[−1, 1] belongs to C[−1, 1] and changes its convexity at s > 1 different points y i, \(\overline {1,s} \) , from (−1, 1). For nN, n ≥ 2, we construct an algebraic polynomial P n of order ≤ n that changes its convexity at the same points y i as f and is such that $$|f(x) - P_n (x)|\;\; \leqslant \;\;C(Y)\omega _3 \left( {f;\frac{1}{{n^2 }} + \frac{{\sqrt {1 - x^2 } }}{n}} \right),\;\;\;\;\;x\;\; \in \;\;[ - 1,\;1],$$ where ω3(f; t) is the third modulus of continuity of the function f and C(Y) is a constant that depends only on \(\mathop {\min }\limits_{i = 0,...,s} \left| {y_i - y_{i + 1} } \right|,\;\;y_0 = 1,\;\;y_{s + 1} = - 1\) , y 0 = 1, y s + 1 = −1.

English version (Springer): Ukrainian Mathematical Journal 56 (2004), no. 3, pp 427-445.

Citation Example: Dzyubenko H. A., Zalizko V. D. Coconvex Approximation of Functions with More than One Inflection Point // Ukr. Mat. Zh. - 2004. - 56, № 3. - pp. 352-365.

Full text