2017
Том 69
№ 5

All Issues

On zeros, singular boundary functions, and modules of angular boundary values for one class of functions analytic in a half-plane

Sharan V.L., Vynnyts’kyi B. V.

Full text (.pdf)


Abstract

We obtain the description of the zeros, singular boundary functions, and modules of angular boundary values of the functions $f \neq 0$ which are analytic in the half-plane $C_{+} = \{ z : \Re z > 0 \}$ and satisfy the condition $$( \forall \varepsilon > 0 ) ( \exists c_1 > 0 ) (\forall z \in \mathbb{Ñ}_{+} ): | f ( z ) | \leq c_1 \exp ( (\sigma + \varepsilon) | z \eta ( | z | ) ), $$, where $0 \leq \sigma < +\infty$ is a given number and $\eta$ is a positive function continuously differentiable on $[0; +\infty$ and such that $t\eta'(t)/\eta(t) \rightarrow 0$ as $t \rightarrow + \infty$/

English version (Springer): Ukrainian Mathematical Journal 56 (2004), no. 6, pp 1015-1022.

Citation Example: Sharan V.L., Vynnyts’kyi B. V. On zeros, singular boundary functions, and modules of angular boundary values for one class of functions analytic in a half-plane // Ukr. Mat. Zh. - 2004. - 56, № 6. - pp. 851–856.

Full text