2017
Том 69
№ 6

All Issues

Lie-algebraic structure of (2 + 1)-dimensional Lax-type integrable nonlinear dynamical systems

Hentosh О. Ye., Prikarpatskii A. K.

Full text (.pdf)


Abstract

A Hamiltonian representation for a hierarchy of Lax-type equations on a dual space to the Lie algebra of integro-differential operators with matrix coefficients extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems is obtained via some special Båcklund transformation. The connection of this hierarchy with Lax-integrable two-metrizable systems is studied.

English version (Springer): Ukrainian Mathematical Journal 56 (2004), no. 7, pp 1117-1126.

Citation Example: Hentosh О. Ye., Prikarpatskii A. K. Lie-algebraic structure of (2 + 1)-dimensional Lax-type integrable nonlinear dynamical systems // Ukr. Mat. Zh. - 2004. - 56, № 7. - pp. 939–946.

Full text