2017
Том 69
№ 7

All Issues

Rate of Convergence of Positive Series

Skaskiv O. B.

Full text (.pdf)


Abstract

We investigate the rate of convergence of series of the form $$F(x) = \mathop \sum \limits_{n = 0}^{ + \infty } \;a_n e^{x\lambda _n + \tau (x)\beta _n } ,\quad a_n \geqslant 0,\quad n \geqslant 1,\quad a_0 = 1$$ where λ = (λn), 0 = λ0 < λn ↑ + ∞, n → + ∞, β = {βn: n ≥ 0} ⊂ ℝ+, and τ(x) is a nonnegative function nondecreasing on [0; +∞), and $$F(x) = \mathop \sum \limits_{n = 0}^{ + \infty } \;a_n f(x\lambda _n ),\quad a_n \geqslant 0,\quad n \geqslant 1,\quad a_0 = 1,$$ where the sequence λ = (λn) is the same as above and f (x) is a function decreasing on [0; +∞) and such that f (0) = 1 and the function ln f(x) is convex on [0; +∞).

English version (Springer): Ukrainian Mathematical Journal 56 (2004), no. 12, pp 1975-1988.

Citation Example: Skaskiv O. B. Rate of Convergence of Positive Series // Ukr. Mat. Zh. - 2004. - 56, № 12. - pp. 1665-1674.

Full text