2017
Том 69
№ 6

All Issues

On direct decompositions in modules over group rings

Petrenko B. V.

Full text (.pdf)


Abstract

In the theory of infinite groups, one of the most important useful generalizations of the classical Maschke theorem is the Kovačs-Newman theorem, which establishes sufficient conditions for the existence of G-invariant complements in modules over a periodic group G finite over the center. We genralize the Kovačs-Newman theorem to the case of modules over a group ring KG, where K is a Dedekind domain.

English version (Springer): Ukrainian Mathematical Journal 49 (1997), no. 2, pp 281-288.

Citation Example: Petrenko B. V. On direct decompositions in modules over group rings // Ukr. Mat. Zh. - 1997. - 49, № 2. - pp. 255–261.

Full text