2017
Том 69
№ 9

All Issues

The solvability of a boundary-value periodic problem

Khoma G. P., Petrovskii Ya. B.

Full text (.pdf)


Abstract

In the space of functions B a 3+ ={g(x, t)=−g(−x, t)=g(x+2π, t)=−g(x, t+T3/2)=g(x, −t)}, we establish that if the condition aT 3 (2s−1)=4πk, (4πk, a (2s−1))=1, k ∈ ℤ, s ∈ ℕ, is satisfied, then the linear problem u u −a 2 u xx =g(x, t), u(0, t)=u(π, t)=0, u(x, t+T 3 )=u(x, t), ℝ2, is always consistent. To prove this statement, we construct an exact solution in the form of an integral operator.

English version (Springer): Ukrainian Mathematical Journal 49 (1997), no. 2, pp 327-333.

Citation Example: Khoma G. P., Petrovskii Ya. B. The solvability of a boundary-value periodic problem // Ukr. Mat. Zh. - 1997. - 49, № 2. - pp. 302–308.

Full text