2019
Том 71
№ 8

All Issues

Criteria for the coincidence of the kernel of a function with the kernels of its Riesz and Abel integral means

Usenko E. G.

Full text (.pdf)


Abstract

We indicate criteria for the coincidence of the Knopp kernels K(f) K(A f), and K (R f) of bounded functions f(t); here, $$R_f \left( t \right) = \frac{1}{{P\left( x \right)}}\int\limits_{\left[ {0;\left. t \right)} \right.} {f\left( x \right)dP and A_f \left( t \right)} = \frac{1}{{\int_0^\infty {e^{{{ - x} \mathord{\left/ {\vphantom {{ - x} t}} \right. \kern-\nulldelimiterspace} t}} dP} }}\int\limits_0^\infty {f\left( x \right)} e^{{{ - x} \mathord{\left/ {\vphantom {{ - x} t}} \right. \kern-\nulldelimiterspace} t}} dP$$ . In Particular, we prove that K(f) = K(A f) ⇔ K(f) = K(R f).

English version (Springer): Ukrainian Mathematical Journal 50 (1998), no. 12, pp 1952-1955.

Citation Example: Usenko E. G. Criteria for the coincidence of the kernel of a function with the kernels of its Riesz and Abel integral means // Ukr. Mat. Zh. - 1998. - 50, № 12. - pp. 1712–1714.

Full text