2017
Том 69
№ 9

All Issues

On Zeros of Periodic Zeta Functions

Laurinčikas A., Šiaučiūnas D.

Full text (.pdf)


Abstract

We consider zeta functions ζ(s; \( \mathfrak{a} \) ) given by Dirichlet series with multiplicative periodic coefficients and prove that, for some classes of functions F , the functions F(ζ(s; \( \mathfrak{a} \) )) have infinitely many zeros in the critical strip. For example, this is true for sin(ζ(s; \( \mathfrak{a} \) )).

English version (Springer): Ukrainian Mathematical Journal 65 (2013), no. 6, pp 953-958.

Citation Example: Laurinčikas A., Šiaučiūnas D. On Zeros of Periodic Zeta Functions // Ukr. Mat. Zh. - 2013. - 65, № 6. - pp. 857–862.

Full text