2017
Том 69
№ 9

All Issues

On One Convolution Equation in the Theory of Filtration of Random Processes

Barsegyan A. G., Engibaryan N. B.

Full text (.pdf)


Abstract

We study the problems of analytic theory and the numerical-analytic solution of the integral convolution equation of the second kind $$ \begin{array}{cc}\hfill {\varepsilon}^2f(x)+{\displaystyle \underset{0}{\overset{r}{\int }}K\left(x-t\right)f(t)dt=g(x),}\hfill & \hfill x\in \left[0,r\right)\hfill \end{array}, $$ where $$ \begin{array}{cccc}\hfill \varepsilon >0,\hfill & \hfill r\le \infty, \hfill & \hfill K\in {L}_1\left(-\infty, \infty \right),\hfill & \hfill K(x)={\displaystyle \underset{a}{\overset{b}{\int }}{e}^{-\left|x\right|s}d\sigma (s)\ge 0.}\hfill \end{array} $$ The factorization approach is used and developed. The key role in this approach is played by the V. Ambartsumyan nonlinear equation.

English version (Springer): Ukrainian Mathematical Journal 66 (2014), no. 8, pp 1220-1235.

Citation Example: Barsegyan A. G., Engibaryan N. B. On One Convolution Equation in the Theory of Filtration of Random Processes // Ukr. Mat. Zh. - 2014. - 66, № 8. - pp. 1092–1105.

Full text