2017
Том 69
№ 6

All Issues

Solvability of boundary-value problems for nonlinear fractional differential equations

Guo Y.

Full text (.pdf)


Abstract

We consider the existence of nontrivial solutions of the boundary-value problems for nonlinear fractional differential equations $$D^{α}u(t)+λ[f(t,u(t))+q(t)]=0,\; 0 < t < 1, \; u(0) = 0,\; u(1) = βu(η),$$ where $λ > 0$ is a parameter, $1 < α ≤ 2,\; η ∈ (0, 1),\; β ∈ \mathbb{R} = (−∞,+∞),\; βη^{α−1} ≠ 1,\; D^{α}$ is a Riemann–Liouville differential operator of order $α$, $f: (0,1)×\mathbb{R}→\mathbb{R}$ is continuous, $f$ may be singular for $t = 0$ and/or $t = 1$, and $q(t) : [0, 1] → [0, +∞)$. We give some sufficient conditions for the existence of nontrivial solutions to the formulated boundary-value problems. Our approach is based on the Leray–Schauder nonlinear alternative. In particular, we do not use the assumption of nonnegativity and monotonicity of $f$ essential for the technique used in almost all available literature.

English version (Springer): Ukrainian Mathematical Journal 62 (2010), no. 9, pp 1409-1419.

Citation Example: Guo Y. Solvability of boundary-value problems for nonlinear fractional differential equations // Ukr. Mat. Zh. - 2010. - 62, № 9. - pp. 1211–1219.

Full text