2017
Том 69
№ 9

All Issues

Kernels of derivations of polynomial rings and Casimir elements

Bedratyuk L. P.

Full text (.pdf)


Abstract

We propose an algorithm for the evaluation of elements of the kernel of an arbitrary derivation of a polynomial ring. The algorithm is based on an analog of the well-known Casimir element of a finite-dimensional Lie algebra. By using this algorithm, we compute the kernels of Weitzenböck derivation $d(x_i ) = x_{i−1},\; d(x_0) = 0,\;i = 0,…, n$, for the cases where $n ≤ 6$.

English version (Springer): Ukrainian Mathematical Journal 62 (2010), no. 4, pp 495-517.

Citation Example: Bedratyuk L. P. Kernels of derivations of polynomial rings and Casimir elements // Ukr. Mat. Zh. - 2010. - 62, № 4. - pp. 435–452.

Full text