2017
Том 69
№ 9

All Issues

Remarks on Certain Identities with Derivations on Semiprime Rings

Baydar N., Fošner A., Strašek R.

Full text (.pdf)


Abstract

Let $n$ be a fixed positive integer, let $R$ be a $(2n)!$ -torsion-free semiprime ring, let $\alpha$ be an automorphism or an anti-automorphism of $R$, and let $D_1 , D_2 : R → R$ be derivations. We prove the following result: If $(D_1^2 (x) + D_2(x))^n  ∘ α(x)^n  = 0 $ holds for all $x Є R$, then $D_1 = D_2 = 0$. The same is true if $R$ is a 2-torsion free semiprime ring and F(x) ° β(x) = 0 for all x ∈ R, where $F(x) = (D_1^2 (x) + D_2(x)) ∘ α(x),\; x ∈ R$, and $β$ is any automorphism or antiautomorphism on $R$.

English version (Springer): Ukrainian Mathematical Journal 66 (2014), no. 10, pp 1609-1614.

Citation Example: Baydar N., Fošner A., Strašek R. Remarks on Certain Identities with Derivations on Semiprime Rings // Ukr. Mat. Zh. - 2014. - 66, № 10. - pp. 1436–1440.

Full text