2017
Том 69
№ 6

All Issues

Inequalities of Different Metrics for Differentiable Periodic Functions

Kofanov V. A.


Abstract

We prove the following sharp inequality of different metrics: $$\begin{array}{cc}\hfill {\left\Vert x\right\Vert}_q\le {\left\Vert {\varphi}_r\right\Vert}_q{\left(\frac{{\left\Vert x\right\Vert}_p}{{\left\Vert {\varphi}_r\right\Vert}_p}\right)}^{\frac{r+1/q}{r+1/p}}{\left\Vert {x}^{(r)}\right\Vert}_{\infty}^{\frac{1/p-1/q}{r+1/p}},\hfill & \hfill q>p>0,\hfill \end{array}$$ for 2π -periodic functions $x ∈ L_{∞}^r$ satisfying the condition $$L{(x)}_p\le {2}^{1/p}{\left\Vert x\right\Vert}_p,$$ where $$L{(x)}_p:= \sup \left\{{\left\Vert x\right\Vert}_{L_p\left[a,b\right]}:a,b\in \left[0,2\pi \right],\kern0.5em \left|x(t)\right|>0,\kern0.5em t\in \left(a,b\right)\right\},$$ and $φ_r$ is the Euler spline of order $r$. As a special case, we establish the Nikol’skii-type sharp inequalities for polynomials and polynomial splines satisfying the condition (A).

English version (Springer): Ukrainian Mathematical Journal 67 (2015), no. 2, pp 230-242.

Citation Example: Kofanov V. A. Inequalities of Different Metrics for Differentiable Periodic Functions // Ukr. Mat. Zh. - 2015. - 67, № 2. - pp. 202–212.