2017
Том 69
№ 9

All Issues

On One Uniqueness Theorem for a Weighted Hardy Space

Hishchak T. I.


Abstract

A uniqueness theorem is proved for the space of functions analytic in the right half plane and satisfying the condition $$\underset{\left|\upvarphi \right|<\frac{\uppi}{2}}{ \sup}\left\{{\displaystyle \underset{0}{\overset{+\infty }{\int }}{\left|f\left(r{e}^{i\varphi}\right)\right|}^p{e}^{-p\sigma r\left| \sin \varphi \right|}dr}\right\}<+\infty .$$

English version (Springer): Ukrainian Mathematical Journal 67 (2015), no. 3, pp 372-380.

Citation Example: Hishchak T. I. On One Uniqueness Theorem for a Weighted Hardy Space // Ukr. Mat. Zh. - 2015. - 67, № 3. - pp. 326–332.