2017
Том 69
№ 9

Всі номери

О сингулярных линеалах в пространствах $\Pi_{\chi}$

Иохвидов И. С.

Повний текст (.pdf)


Абстракт

The author consider the Hilbert space $\mathfrak{H}$ in which a $J$-metric $[x, y] = (yx, y)$ is introduced, where $yj$ is the difference of two orthoprojections in $\mathfrak{H}$. The lineal $\mathfrak{L} \subset \mathfrak{H}$ is called definite if the form $[x, x] (x \in \mathfrak{L})$ has a constant sign; the lineal is called singular if the norms $(x, x)^{1/2}$ and $|[ x , x]|^{1/2}$ are nonequivalent. The properties of singular lineals are studied. In particular, it is shown that an arbitrary infinite-dimensional lineal with a positive Hermitian-bilinear metric $[x, y]$, complete with respact to the norm $|x| = [x, x]^{1/2}$ may, preserving the form $[x, y]$, be embeded into space $\Pi_{\chi}$ with an arbitary integer $\chi$ so that it proves to be a singular lineal with a given measure of singularity $m \leq \chi$.

Зразок цитування: Иохвидов И. С. О сингулярных линеалах в пространствах $\Pi_{\chi}$ // Укр. мат. журн. - 1964. - 16, № 3. - С. 300-308.

Повний текст