2018
Том 70
№ 4

Всі номери

Точкові взаємодії на прямій і базиси Ріса з δ -функцій

Ковальов Ю. Г.


Абстракт

Приведено описание некоторой связи пространств Соболева $W^1_2 (R),\; W^2_2 (R)$ и гильбертова пространства $\ell_2$. Пусть $Y$ — конечная или исчислимая монотонная последовательность точек на $R$ и $d := \mathrm{inf} \bigl\{ | y\prime y\prime \prime | , y\prime , y\prime \prime \in Y, y\prime \not = y\prime \prime \bigr\}$. С помощью этой связи доказано, что при условии $d = 0$ системы дельта-функций $\bigl\{ \delta (x yj), y_j \in Y \bigr\} $ и их производных $\bigl\{ \delta \prime (x y_j), y_j \in Y \bigr\} $ не образуют базисы Риса в замыкании своих линейных оболочек в гильбертовых пространствах $W^1_2 (R),\; W^2_2 (R)$, а при условии $d > 0$ — образуют. Дано описание расширений Фридрихса и Крейна, продемонстрирована их трансверсальность, приведены конструкция базисной граничной тройки и описание всех неотрицательных самосопряженных расширений оператора $A^{\prime}$ .

Зразок цитування: Ковальов Ю. Г. Точкові взаємодії на прямій і базиси Ріса з δ -функцій // Укр. мат. журн. - 2017. - 69, № 12. - С. 1615-1624.