2019
Том 71
№ 9

Всі номери

Об оценках значений поперечников классов функций, определенных с помощью обобщенных модулей непрерывности и мажорант, в весовом пространстве $L_{2x} (0,1)$

Вакарчук С. Б.


Абстракт

Для класiв функцiй $W^r_2 (\Omega^{(\nu )}_{m,x}; \Psi )$, де $r \in Z+, m \in N, \nu \geq 0,$ а $\Omega^{(\nu )}_{m,x}$ i $\Psi$ — вiдповiдно узагальнений модуль неперервностi $m$-го порядку та мажоранта, отримано оцiнки зверху i знизу колмогоровського, лiнiйного, бернштейнiвського, гельфандiвського, проекцiйного поперечникiв та поперечника Фур’є у просторi $L_{2,x}(0, 1)$. Також знайдено оцiнки зверху та знизу верхнiх меж коефiцiєнтiв Фур’є – Бесселя на цих класах. Вказано умови для ма- жорант, при виконаннi яких обчислюються точнi значення зазначених поперечникiв та верхнiх меж коефiцiєнтiв Фур’є – Бесселя.

Зразок цитування: Вакарчук С. Б. Об оценках значений поперечников классов функций, определенных с помощью обобщенных модулей непрерывности и мажорант, в весовом пространстве $L_{2x} (0,1)$  // Укр. мат. журн. - 2019. - 71, № 2. - С. 179-189.