2017
Том 69
№ 9

Всі номери

Прямі й обернені теореми в теорії наближень методом Рітца

Горбачук М. Л., Грушка Я. І., Торба С. М.

Повний текст (.pdf)


Абстракт

Для довільного самоспряженого оператора $B$ у гільбертовому просторі $\mathfrak{Y}$ наведено прямі й обернені теореми, що встановлюють зв'язок між степенем гладкості вектора $X \in \mathfrak{Y}$ відносно оператора $B$, порядком прямування до нуля його найкращого наближення цілими векторами експоненціального типу оператора $B$ і $k$-модулем неперервності вектора $x$ щодо оператора $B$. Результати застосовано до знаходження апріорних оцінок наближених за Рітцом розв'язків операторних рівнянь у гільбертовому просторі.

Англомовна версія (Springer): Ukrainian Mathematical Journal 57 (2005), no. 5, pp 751-764.

Зразок цитування: Горбачук М. Л., Грушка Я. І., Торба С. М. Прямі й обернені теореми в теорії наближень методом Рітца // Укр. мат. журн. - 2005. - 57, № 5. - С. 633–643.

Повний текст