2017
Том 69
№ 9

Всі номери

Деякі результати про моменти границі мартингала, пов'язаного з надкритичним гіллястим випадковим блуканням, та розв'язків деяких стохастичних різницевих рівнянь

Іксанов О. М.

Повний текст (.pdf)


Абстракт

Нехай $\mathcal{M}_{(n)},\quad n = 1, 2,...,$ — надкритичне випадкове блукання, у якому розмір родини може бути нескінченним з додатною ймовірністю. Припустимо, що стандартний мартингал, пов'язаний з $\mathcal{M}_{(n)},$ збігається майже напевно і в середньому до випадкової величини $W$. Для великого підкласу невід'ємних та вгнутих функцій $f$ наведено критерій скінченності $\mathbb{E}W f(W)$. Основні твердження роботи узагальнюють деякі результати, отримані в дисертації Кульбуша, а також результати, відомі для процесів Гальтона-Ватсона. У процесі доведення досліджується існування $f$ - моментів розв'язків деяких стохастичних різницевих рівнянь.

Англомовна версія (Springer): Ukrainian Mathematical Journal 58 (2006), no. 4, pp 505-528.

Зразок цитування: Іксанов О. М. Деякі результати про моменти границі мартингала, пов'язаного з надкритичним гіллястим випадковим блуканням, та розв'язків деяких стохастичних різницевих рівнянь // Укр. мат. журн. - 2006. - 58, № 4. - С. 451–471.

Повний текст