2017
Том 69
№ 9

Всі номери

Неравенства для производных функций в пространствах Lp

Кофанов В. А.

Повний текст (.pdf)


Абстракт

Отримано нову точну нерівність для локальних норм функцій $x \in L^{r}_{\infty,\infty}(\textbf{R}):$ $$\frac1{b-a}\int\limits_a^b|x'(t)|^qdt \leq \frac1{\pi}\int\limits_0^{\pi}|\varphi_{r-1}(t)|^q dt \left(\frac{||x||_{L_{\infty}(\textbf{R})}}{||\varphi_r||_{\infty}}\right)^{\frac{r-1}rq}||x^{(r)}||^q_{\infty}r,\quad r \in \textbf{N},$$ де $\varphi_r$ — ідеальний сплайн Ейлера, на проміжках $[a, b]$ монотонності $x$ для випадку $q \geq 1$, а також для довільних $q > 0$ у випадках $r = 2$ та $r = 3.$ Як наслідок, відому нерівність А. А. Лигуна для періодичних функцій $x \in L^{r}_{\infty}$ $$||x^{(k)}||_q \leq \frac{||\varphi_{r-k}||_q}{||\varphi_r||_{\infty}^{1-k/r}} ||x||^{1-k/r}_{\infty}||x^{(r)}||^{k/r}_{\infty},\quad k,r \in \textbf{N},\quad k < r, \quad 1 \leq q < \infty,$$

Англомовна версія (Springer): Ukrainian Mathematical Journal 60 (2008), no. 10, pp 1557-1573.

Зразок цитування: Кофанов В. А. Неравенства для производных функций в пространствах Lp // Укр. мат. журн. - 2008. - 60, № 10. - С. 1338 – 1349.

Повний текст