2017
Том 69
№ 9

Всі номери

Асимптотическое поведение решений задачи Коши x′ = f(t, x, x′), x(0) = 0

Зєрнов А. Є., Кузіна Ю. В.

Повний текст (.pdf)


Абстракт

Доводиться існування неперервно диференційовних розв'язків $x:(0,{\rho ]} \to \mathbb{R}^n$ таких, що $$\left\| {x\left( t \right) - {\xi }\left( t \right)} \right\| = O\left( {{\eta }\left( t \right)} \right),{ }\left\| {x'\left( t \right) - {\xi '}\left( t \right)} \right\| = O\left( {{\eta }\left( t \right)/t} \right),{ }t \to + 0,$$ або $$\left\| {x\left( t \right) - S_N \left( t \right)} \right\| = O\left( {t^{N + 1} } \right),{ }\left\| {x'\left( t \right) - S'_N \left( t \right)} \right\| = O\left( {t^N } \right),{ }t \to + 0,$$ де $${\xi }:\left( {0,{\tau }} \right) \to \mathbb{R}^n ,{ \eta }:\left( {0,{\tau }} \right) \to \left( {0, + \infty } \right),{ }\left\| {{\xi }\left( t \right)} \right\| = o\left( 1 \right),$$ $${\eta }\left( t \right) = o\left( t \right),{ \eta }\left( t \right) = o\left( {\left\| {{\xi }\left( t \right)} \right\|} \right),{ }t \to + 0,{ }S_N \left( t \right) = \sum\limits_{k = 2}^N {c_k t^k ,}$$ $c_k \in \mathbb{R}^n ,k \in \left\{ {2,...,N} \right\},{ }0 < {\rho } < {\tau },\rho$ — достаньо мале.

Англомовна версія (Springer): Ukrainian Mathematical Journal 54 (2002), no. 12, pp 2060-2066.

Зразок цитування: Зєрнов А. Є., Кузіна Ю. В. Асимптотическое поведение решений задачи Коши x′ = f(t, x, x′), x(0) = 0 // Укр. мат. журн. - 2002. - 54, № 12. - С. 1698-1703.

Повний текст