2018
Том 70
№ 2

All Issues

Trofimchuk S. I.

Articles: 12
Anniversaries (Ukrainian)

Anatolii Mykhailovych Samoilenko (on his 80th birthday)

Antoniouk A. Vict., Berezansky Yu. M., Boichuk A. A., Gutlyanskii V. Ya., Khruslov E. Ya., Kochubei A. N., Korolyuk V. S., Kushnir R. M., Lukovsky I. O., Makarov V. L., Marchenko V. O., Nikitin A. G., Parasyuk I. O., Pastur L. A., Perestyuk N. A., Portenko N. I., Ronto M. I., Sharkovsky O. M., Tkachenko V. I., Trofimchuk S. I.

Full text (.pdf)

Ukr. Mat. Zh. - 2018. - 70, № 1. - pp. 3-6

Anniversaries (Ukrainian)

Oleksandr Mykolaiovych Sharkovs’kyi (on his 80th birthday)

Fedorenko V. V., Ivanov А. F., Khusainov D. Ya., Kolyada S. F., Maistrenko Yu. L., Parasyuk I. O., Pelyukh G. P., Romanenko O. Yu., Samoilenko V. G., Shevchuk I. A., Sivak A. G., Tkachenko V. I., Trofimchuk S. I.

Full text (.pdf)

Ukr. Mat. Zh. - 2017. - 69, № 2. - pp. 257-260

Article (Ukrainian)

On sharp conditions for the global stability of a difference equation satisfying the Yorke condition

Nenya O. I., Tkachenko V. I., Trofimchuk S. I.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2008. - 60, № 1. - pp. 73–80

Continuing our previous investigations, we give simple sufficient conditions for global stability of the zero solution of the difference equation xn+1 = qxn + fn (xn ,..., xn-k ), n ∈ Z, where nonlinear functions fn satisfy the Yorke condition. For every positive integer k, we represent the interval (0, 1] as the union of [(2k + 2) /3] disjoint subintervals, and, for q from each subinterval, we present a global-stability condition in explicit form. The conditions obtained are sharp for the class of equations satisfying the Yorke condition.

Article (Ukrainian)

Spaces of piecewise-continuous almost-periodic functions and of almost-periodic sets on the line. I

Samoilenko A. M., Trofimchuk S. I.

Full text (.pdf)

Ukr. Mat. Zh. - 1991. - 43, № 12. - pp. 1613–1619

Article (Ukrainian)

Unbounded functions with almost periodic differences

Samoilenko A. M., Trofimchuk S. I.

Full text (.pdf)

Ukr. Mat. Zh. - 1991. - 43, № 10. - pp. 1409–1413

Article (Ukrainian)

Generalized solutions of impulse systems and the phenomenon of pulsations

Perestyuk N. A., Samoilenko A. M., Trofimchuk S. I.

Full text (.pdf)

Ukr. Mat. Zh. - 1991. - 43, № 5. - pp. 657–663

Article (Ukrainian)

Impulse systems with fixed moments of shocks of general position: The structure of the set of moments of the shocks

Trofimchuk E. P., Trofimchuk S. I.

Full text (.pdf)

Ukr. Mat. Zh. - 1990. - 42, № 3. - pp. 378–383

Article (Ukrainian)

Impulse systems with fixed shock times of general disposition: Existence, uniqueness of solution, and the well-posedness of the Cauchy problem

Trofimchuk E. P., Trofimchuk S. I.

Full text (.pdf)

Ukr. Mat. Zh. - 1990. - 42, № 2. - pp. 230–237

Article (Ukrainian)

Bounded and periodic solutions of weakly nonlinear impulse evolutionary systems.

Rogovchenko Yu. V., Trofimchuk S. I.

Full text (.pdf)

Ukr. Mat. Zh. - 1987. - 39, № 2. - pp. 260–264

Article (Ukrainian)

A criterion for ?rough? diagonalizability of systems of linear extensions of compact fluxes

Trofimchuk S. I.

Full text (.pdf)

Ukr. Mat. Zh. - 1985. - 37, № 4. - pp. 523–527

Article (Ukrainian)

Linear extensions that satisfy the transversality condition

Trofimchuk S. I.

Full text (.pdf)

Ukr. Mat. Zh. - 1984. - 36, № 6. - pp. 802 – 804

Article (Ukrainian)

A necessary condition for existence of an invariant manifold of a linear extension of a dynamic system on a compact manifold

Trofimchuk S. I.

Full text (.pdf)

Ukr. Mat. Zh. - 1984. - 36, № 3. - pp. 390 - 393