2019
Том 71
№ 2

All Issues

Sobolevsky P. Ye.

Articles: 10
Article (Ukrainian)

Difference schemes of optimal type for an approximate solution of parabolic equations (Banach case)

Khoang Van Lai, Sobolevsky P. Ye.

Full text (.pdf)

Ukr. Mat. Zh. - 1981. - 33, № 1. - pp. 39-46

Article (Ukrainian)

Difference schemes of optimal type for the approximate solution of parabolic equations

Khoang Van Lai, Sobolevsky P. Ye.

Full text (.pdf)

Ukr. Mat. Zh. - 1980. - 32, № 5. - pp. 623–629

Article (Ukrainian)

Stability and convergence of high-order difference schemes for parabolic partial differential equations

Alibekov Kh. A., Sobolevsky P. Ye.

Full text (.pdf)

Ukr. Mat. Zh. - 1980. - 32, № 3. - pp. 291 - 300

Article (Ukrainian)

Stability and convergence of difference schemes of a high order of approximation for parabolic equations

Alibekov Kh. A., Sobolevsky P. Ye.

Full text (.pdf)

Ukr. Mat. Zh. - 1979. - 31, № 6. - pp. 627–634

Article (Ukrainian)

Well-posed solvability of a difference boundary-value problem in Bochner space

Polichka A. Ye., Sobolevsky P. Ye.

Full text (.pdf)

Ukr. Mat. Zh. - 1976. - 28, № 4. - pp. 511–523

Article (Ukrainian)

On the solvability of mixed problems for one-dimensional quasilinear hyperbolic equations

Pogoreletsko V. A., Sobolevsky P. Ye.

Full text (.pdf)

Ukr. Mat. Zh. - 1970. - 22, № 1. - pp. 114–121

Article (Ukrainian)

A priori estimates of solutions to a certain class of nonlinear nonstationary equations

Raskin V. G., Sobolevsky P. Ye.

Full text (.pdf)

Ukr. Mat. Zh. - 1968. - 20, № 4. - pp. 547–552

Article (Ukrainian)

Use of fractional powers of operators to investigate quasilinear parabolic and elliptic equations and systems

Sobolevsky P. Ye.

Full text (.pdf)

Ukr. Mat. Zh. - 1967. - 19, № 3. - pp. 127–130

Article (Ukrainian)

A nonlocal existence theorem for solutions of nonlinear hyperbolic equations in Hilbert space

Pogorelenko V. A., Sobolevsky P. Ye.

Full text (.pdf)

Ukr. Mat. Zh. - 1967. - 19, № 1. - pp. 113–115

Article (Russian)

Structure of a set of solutions of equations of the parabolic type

Krasnosel'skii M. A., Sobolevsky P. Ye.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 1964. - 16, № 3. - pp. 319-333

The basic result of this research is formulated as follows: if the mixed boundary value problem for a nonlinear parabolic equation has two solutions, it has a continuum of solutions.