2019
Том 71
№ 5

All Issues

Pahirya M. M.

Articles: 6
Article (Ukrainian)

Continued-fractions representations of the functions $\mathrm{s}\mathrm{h} z, \mathrm{c}\mathrm{h} z, \mathrm{s}\mathrm{i}\mathrm{n} z, \mathrm{c}\mathrm{o}\mathrm{s} z$

Pahirya M. M.

↓ Abstract

Ukr. Mat. Zh. - 2018. - 70, № 5. - pp. 682-698

We obtain the representations of the functions $\mathrm{s}\mathrm{h} z, \mathrm{c}\mathrm{h} z, \mathrm{s}\mathrm{i}\mathrm{n} z,$ and $\mathrm{c}\mathrm{o}\mathrm{s} z$ by quasireciprocal functional continued fractions of the Thiele type.

Article (Ukrainian)

Estimation of the Remainder for the Interpolation Continued C-Fraction

Pahirya M. M.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2014. - 66, № 6. - pp. 806–814

We estimate the remainder of the interpolation continued C-fraction.

Brief Communications (Ukrainian)

Properties of reciprocal derivatives

Katsala R. A., Pahirya M. M.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2010. - 62, № 5. - pp. 708–713

New properties of reciprocal derivatives are established.

Brief Communications (Ukrainian)

Equivalence of two methods for construction of regular continued C-fractions

Katsala R. A., Pahirya M. M.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2009. - 61, № 7. - pp. 1005-1009

A regular continued C-fraction is associated with a power series. The coefficients of this fraction are determined via either Hankel determinants or inverse derivatives. We prove the equivalence of these approaches to the construction of regular continued C-fractions.

Article (Ukrainian)

Evaluation of the remainder term for the Thiele interpolation continued fraction

Pahirya M. M.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2008. - 60, № 11. - pp. 1548–1554

We present an estimate of the remainder term for the Thiele interpolation continued fraction.

Brief Communications (Ukrainian)

Problem of interpolation of functions by two-dimensional continued fractions

Pahirya M. M., Svyda T. S.

↓ Abstract   |   Full text (.pdf)

Ukr. Mat. Zh. - 2006. - 58, № 6. - pp. 842–851

We investigate the problem of interpolation of functions of two real variables by two-dimensional continued fractions.